
本文实例分析了python动态性强类型用法。分享给大家供大家参考。具体如下:
Python变量声明和定义
与C#不同,Python在使用变量之前无须定义它的类型,试着运行下面的例子:
i = 12 print i
python动态性强类型用法实例
从上边我们可以看到,变量 i 在使用前并不需要定义,但是必须声明以及初始化该变量。试着运行下面的例子:
i = 1
print i + j
上面的代码会产生一个异常:“NameError: name 'j' is not defined”,Python提示变量 j 没有定义。这点和BASIC等弱类型的语言不一样。在BASIC中,执行上述代码的时候不会产生异常,你可以在EXCEL的VBA开发环境里试一下,把 print改为MsgBox就可以,结果会输出 1 。这说明Python并不是一种类似BASIC的弱类型语言。
另一方面,Python与C#有一个很大的差异就是在程序运行过程中,同一变量名可以(在不同阶段)代表不同类型的数据,看看下边的例子:
i = 1
print i,type(i),id(i)
i = 10000000000
print i,type(i),id(i)
i = 1.1
print i,type(i),id(i)
变量 i 的类型在程序执行过程中分别经历了int、long和float的变化,这和静态类型语言(如C等)有很大不同。静态语言只要一个变量获得了一个数据类 型,它就会一直是这个类型,变量名代表的是用来存放数据的内存位置。而Python中使用的变量名只是各种数据及对象的引用,用id()获取的才是存放数 据的内存位置,我们输入的1、10000000000和1.1三个数据均会保存在id()所指示的这些内存位置中,直到垃圾回收车把它拉走(在系统确定你 不再使用它的时候)。这是动态语言的典型特征,它确定一个变量的类型是在给它赋值的时候。
另一方面,Python又是强类型的,试着运行下边的例子:
# -*- coding: utf-8 -*-
i = 10; j = 'ss'
print i+j
#正确的写法是print str(i)+j,输出10ss
会产生一个异常:“TypeError: unsupported operand type(s) for +: 'int' and 'str'”。在BASIC等弱类型的语言中,上边的例子会正常运行并返回(虽然有时候是不可预期的)结果。
所以,我们说Python既是一种动态类型语言,同时也是一种强类型的语言,这点是和C#不同的地方。对于Python的这种变量的声明、定义和使 用方式,C#程序员可能要花一段时间去适应,不过相信你会很快就喜欢上它,因为它让事情变得更加简单(而且不会不安全)。而且,C# 4.0 已经开始用类似的方式定义和使用变量(通过在变量名前加关键字dynamic),如果你先学了Python变量,将能够更快的适应C# 4.0的动态编程特征。
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16