
本文实例分析了python动态性强类型用法。分享给大家供大家参考。具体如下:
Python变量声明和定义
与C#不同,Python在使用变量之前无须定义它的类型,试着运行下面的例子:
i = 12 print i
python动态性强类型用法实例
从上边我们可以看到,变量 i 在使用前并不需要定义,但是必须声明以及初始化该变量。试着运行下面的例子:
i = 1
print i + j
上面的代码会产生一个异常:“NameError: name 'j' is not defined”,Python提示变量 j 没有定义。这点和BASIC等弱类型的语言不一样。在BASIC中,执行上述代码的时候不会产生异常,你可以在EXCEL的VBA开发环境里试一下,把 print改为MsgBox就可以,结果会输出 1 。这说明Python并不是一种类似BASIC的弱类型语言。
另一方面,Python与C#有一个很大的差异就是在程序运行过程中,同一变量名可以(在不同阶段)代表不同类型的数据,看看下边的例子:
i = 1
print i,type(i),id(i)
i = 10000000000
print i,type(i),id(i)
i = 1.1
print i,type(i),id(i)
变量 i 的类型在程序执行过程中分别经历了int、long和float的变化,这和静态类型语言(如C等)有很大不同。静态语言只要一个变量获得了一个数据类 型,它就会一直是这个类型,变量名代表的是用来存放数据的内存位置。而Python中使用的变量名只是各种数据及对象的引用,用id()获取的才是存放数 据的内存位置,我们输入的1、10000000000和1.1三个数据均会保存在id()所指示的这些内存位置中,直到垃圾回收车把它拉走(在系统确定你 不再使用它的时候)。这是动态语言的典型特征,它确定一个变量的类型是在给它赋值的时候。
另一方面,Python又是强类型的,试着运行下边的例子:
# -*- coding: utf-8 -*-
i = 10; j = 'ss'
print i+j
#正确的写法是print str(i)+j,输出10ss
会产生一个异常:“TypeError: unsupported operand type(s) for +: 'int' and 'str'”。在BASIC等弱类型的语言中,上边的例子会正常运行并返回(虽然有时候是不可预期的)结果。
所以,我们说Python既是一种动态类型语言,同时也是一种强类型的语言,这点是和C#不同的地方。对于Python的这种变量的声明、定义和使 用方式,C#程序员可能要花一段时间去适应,不过相信你会很快就喜欢上它,因为它让事情变得更加简单(而且不会不安全)。而且,C# 4.0 已经开始用类似的方式定义和使用变量(通过在变量名前加关键字dynamic),如果你先学了Python变量,将能够更快的适应C# 4.0的动态编程特征。
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29