
大数据植根安防行业 绽放价值光彩
如今,大数据的发展正在如火如荼的进行中,大数据的应用也在逐渐深入,对安防行业的影响也是巨大的,大数据正植根于安防行业,绽放价值的光彩。
谈大数据始终绕不过云计算。IT界对两者的关系也有过一些不同的观点,不过总体来看,认为这两者是互相补充的仍为多数。大数据离企业的核心业务的竞争力更接近,云计算是一种提供价值的模式,它既是一种商业模式也是一种技术模式,使企业能够更加高效率建立基础架构,更灵活的应用基础架构,包括大数据等各类应用,能够更好的运转起来。
那么,大数据究竟能往哪些方面挖掘商业价值?可以从以下四个方面挖掘出巨大的商业价值:
第一,对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动;第二,运用大数据模拟实境,发掘新的需求和提高投入的回报率;第三,提高大数据成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率;第四,进行商业模式、产品和服务的创新。
通过以上四个杠杆,大数据对市场占有率、成本控制、投入回报率和用户体验都会起到极大的促进作用。其中,受益较为明显的就是零售行业,通过对交易过程、产品使用和购买行为进行数据化分析和挖掘,可以在某些情况下通过模型模拟来判断不同变量的情况下何种方案投入回报最高。根据麦肯锡的估计,如果零售商能够充分发挥大数据的优势,其营运利润率就会有年均60%的增长空间,生产效率将会实现年均0.5%—1%的增长幅度。
对于安防行业来说同样如此。目前来看,大数据的典型应用是平安城市。
平安城市是一个特大型的管理系统,综合性强。它的建设目标是满足治安管理、城市管理、交通管理、应急指挥等需求,往往还要兼顾灾难事故预警、安全生产监控等方面对图像监控的需求,并考虑报警、门禁等配套系统的集成以及与广播系统的联动。所以,平安城市注定将是一个大的数据集合体,对它的精准分析和高效利用也就至关重要。
而从具体行业来看,从“事后查看”到“事前预警”,多年来一直是公安、交通等各重点行业用户的迫切需求,但长期以来,视频的清晰度以及各项基础、分析技术的发展都无法满足现实的需求。而随着高清技术的应用以及IT架构、分析技术的快速发展,依靠大数据分析技术,能从大量非结构化的视频数据中提取出有价值的信息,从而使“事前预警”成为现实。
当然,大数据分析确实有其价值,但相关技术的成熟不可能是一蹴而就的,特别是在相关IT基础设施与服务层、数据组织与管理层、数据分析与发现层、决策支持与IT服务层仍然需要全面导入创新技术。
目前从安防角度来看,对于结构化数据,平台软件产品上已经普遍出现了对此类数据的数据统计、分析及简单地自动处理。如统计用户登录次数、设备断线等等;而对于非结构化数据的分析、应用、处理,目前我们更多地是把它归属到智能分析的范畴。比如车牌智能识别、智能行为分析(包括绊线、越界)、人脸识别、视频分类检索及视频浓缩摘要技术等等。这些技术中,很多已在初期应用中,而很多仍然处在研发过程中。对这类数据的分析和处理也将成为安防大数据的核心价值点。
安防行业的发展,对平安城市的构建是至关重要的,而安防行业在推动平安城市建设中,需要借助相关工具,大数据的应用为安防行业输入巨大的动力,植根于安防行业的大数据,也将其价值发挥的淋漓尽致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03