京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据作为现在最流行的一个方向,被很多的企业重视。那么如何提升企业的大数据能力,以发掘出它最大的价值呢?您可以从本文中找到答案。
一个成年人平均每天做出70个有意识的决定,一年就要做出超过25000个决定。企业的大部分决定是不重要的,但这其中会有一些决定给企业带来重大的机遇或者严重的后果。企业无法避免做出坏的决定,但是可以通过提升数据和分析能力降低做出坏决定的概率。
数据和分析并不是一个新的概念,早在上个世纪的两股宏观经济潮流中就已经形成。第一股潮流是劳动力从劳动力密集型产业向技术密集型产业转移。第二股潮流是二十世纪60年代企业引入了决策支持系统。随着不断增加的智力工作者从事于高科技工作,存储的资料和数据量也随之提升,数据分析在企业决策制定和执行中扮演着越来越重要的角色。
但是,企业在初期是很难整合数据并将数据分析应用于他们的日常运营中的。他们所收集的数据变量有限,且数据以不同的格式和结构存储在不同的地方。而且,从这些含有噪音的数据中过滤出相关的、重要的、有效的数据的困难程度随着数据量的增大呈指数级数上升。根据IDC的研究,从2005年到2012年,全球的数据量翻了27番,约达到2.5ZB.其中仅有25%的数据是有用的,仅有3%的数据贴有标签能被使用,仅有0.5%的数据被用于分析。
许多具有行业领导地位的企业已经意识到需要提升组织内部收集、存储、获取和分析这些超大量、极复杂的数据集的必要性。而且,企业需要为提升大数据能力投入更多的资源,以让其全面发挥潜在的作用。对大数据能力的投资需要遵循数据分析的价值链,布局于5个方面。
收集与前期准备:要有效地收集和管理大规模、复杂的数据集。企业数据产生于各自独立的数据库。为了后期能最大化数据的使用,企业应制定相应的数据标准,确保数据的准确性、一致性和可转换性。
处理:数据必须能被实时处理。在一些竞争激烈的领域,对企业来说,比竞争对手提前几天可能就能存活下来。因此企业需要评估基础架构、算法,编程语言,以提高数据的处理速度。
可视化:处理完的数据需要以简单易懂的方式呈现出来。人脑对大规模数据或文本数据的处理是缓慢的,因此企业可使用可视化工具提升对数据认知、洞察的能力。
解读数据:可视化数据应被正确地解读。企业应尽量避免错误的数据解读对认知造成的偏差。仅靠直觉亦或是极端推崇数据结论都可能将企业引向歧途。
改进:智力工作者必须提供反馈与指导。企业要促进利益相关者的反馈机制,形成反馈闭环。这种反馈机制能够对连续的分析、学习、问题识别给予支持,从而扩大信息的数量与范围。
企业要获得大数据的潜在价值的困难是艰巨的。这些困难横跨多个领域,如预算、技术的可获得性、已有基础架构的使用、运作模式等等。然而,能够有效使用数据、洞悉先机的企业将在行业里占有优势地位。而从长远来看,这样的企业将变成这个行业的领导者而非仅仅是参与者.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16