
决策树
经验熵是针对所有样本的分类结果而言
经验条件熵是针对每个特征里每个特征样本分类结果之特征样本比例和
基尼不纯度
简单地说就是从一个数据集中随机选取子项,度量其被错误分类到其他分组里的概率
决策树算法使用轴平行分割来表现具体一定的局限性
C5.0算法--可以处理数值型和缺失 只使用最重要的特征--使用的熵度量-可以自动修剪枝
划分数据集
set.seed(123) #设置随机种子
train_sample <- sample(1000, 900)#从1000里随机900个数值
credit_train <- credit[train_sample, ]
credit_test <- credit[-train_sample, ]
library(C50)
credit_model <- C5.0(credit_train[-17], credit_train$default) #特征数据框-标签
C5.0(train,labers,trials = 1,costs = NULL)
trials控制自动法循环次数多迭代效果更好 costs可选矩阵 与各类型错误项对应的成本-代价矩阵
summary(credit_model)#查看模型
credit_pred <- predict(credit_model, credit_test)#预测
predict(model,test,type="class") type取class分类结果或者prob分类概率
单规则算法(1R算法)--单一规则直观,但大数据底下,对噪声预测不准
library(RWeka)
mushroom_1R <- OneR(type ~ ., data = mushrooms)
重复增量修建算法(RIPPER) 基于1R进一步提取规则
library(RWeka)
mushroom_JRip <- JRip(type ~ ., data = mushrooms)
[plain] view plain copy
credit <- read.csv("credit.csv")
str(credit)
# look at two characteristics of the applicant
table(credit$checking_balance)
table(credit$savings_balance)
# look at two characteristics of the loan
summary(credit$months_loan_duration)
summary(credit$amount)
# look at the class variable
table(credit$default)
# create a random sample for training and test data
# use set.seed to use the same random number sequence as the tutorial
set.seed(123)
#从1000里随机900个数值
train_sample <- sample(1000, 900)
str(train_sample)
# split the data frames切分数据集
credit_train <- credit[train_sample, ]
credit_test <- credit[-train_sample, ]
# check the proportion of class variable类别的比例
prop.table(table(credit_train$default))
prop.table(table(credit_test$default))
## Step 3: Training a model on the data ----
# build the simplest decision tree
library(C50)
credit_model <- C5.0(credit_train[-17], credit_train$default)
# display simple facts about the tree
credit_model
# display detailed information about the tree
summary(credit_model)
## Step 4: Evaluating model performance ----
# create a factor vector of predictions on test data
credit_pred <- predict(credit_model, credit_test)
# cross tabulation of predicted versus actual classes
library(gmodels)
CrossTable(credit_test$default, credit_pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))
## Step 5: Improving model performance ----
## Boosting the accuracy of decision trees
# boosted decision tree with 10 trials提高模型性能 利用boosting提升
credit_boost10 <- C5.0(credit_train[-17], credit_train$default,
trials = 10)
credit_boost10
summary(credit_boost10)
credit_boost_pred10 <- predict(credit_boost10, credit_test)
CrossTable(credit_test$default, credit_boost_pred10,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))
## Making some mistakes more costly than others
# create dimensions for a cost matrix
matrix_dimensions <- list(c("no", "yes"), c("no", "yes"))
names(matrix_dimensions) <- c("predicted", "actual")
matrix_dimensions
# build the matrix设置代价矩阵
error_cost <- matrix(c(0, 1, 4, 0), nrow = 2, dimnames = matrix_dimensions)
error_cost
# apply the cost matrix to the tree
credit_cost <- C5.0(credit_train[-17], credit_train$default,
costs = error_cost)
credit_cost_pred <- predict(credit_cost, credit_test)
CrossTable(credit_test$default, credit_cost_pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))
#### Part 2: Rule Learners -------------------
## Example: Identifying Poisonous Mushrooms ----
## Step 2: Exploring and preparing the data ---- 自动因子转换--将字符标记为因子减少存储
mushrooms <- read.csv("mushrooms.csv", stringsAsFactors = TRUE)
# examine the structure of the data frame
str(mushrooms)
# drop the veil_type feature
mushrooms$veil_type <- NULL
# examine the class distribution
table(mushrooms$type)
## Step 3: Training a model on the data ----
library(RWeka)
# train OneR() on the data
mushroom_1R <- OneR(type ~ ., data = mushrooms)
## Step 4: Evaluating model performance ----
mushroom_1R
summary(mushroom_1R)
## Step 5: Improving model performance ----
mushroom_JRip <- JRip(type ~ ., data = mushrooms)
mushroom_JRip
summary(mushroom_JRip)
# Rule Learner Using C5.0 Decision Trees (not in text)
library(C50)
mushroom_c5rules <- C5.0(type ~ odor + gill_size, data = mushrooms, rules = TRUE)
summary(mushroom_c5rules)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15