京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 运营商不能做“傻土豪”
大数据时代的到来,既带来巨大价值也带来严峻挑战,运营商也不例外,随着移动互联网时代的到来,三大运营商的传统业务和整体固网业务都已受到巨大冲击,增长呈现下滑趋势,电信运营商在大数据时代将面临来自技术和业务两个层面的挑战。
电信业近十年来的变革,尤其是今年来以来,随着4G技术的发展和移动互联网的普及,电信运营商的各种商业模式随之被打破。
尽管电信运营商一直积极优化4G网络、加强WLAN的部署,中国移动也已经开始力推LTE,但网络的持续扩容与升级并未给电信运营商带来更加可观的收入,三大运营商的传统业务和整体固网业务都受到了移动互联网的巨大冲击,增长趋缓甚至下滑。
随着移动互联网用户流量激增和4G业务的推广,移动网络数据业务和流量也在大幅增加。在大数据时代,电信运营商还面临着来自数据、管理方面的巨大挑战。海量的半结构化和非结构化的数据大大降低了数据处理的效率,给运营商带来了巨大的数据存储和读写压力。如若不能缩短数据处理的周期,很多数据的价值都会被极大地稀释。
大数据时代运营商的挑战与机会
大数据为运营商在技术和业务两个层面都带来挑战。从技术来讲,主要是数据的管理、采集、分析不足。数据量的增加使得运营商传统的处理数据和存储压力增大,数据类型的多样化使得传统数据处理窗口难以处理;在数据分析方面,运营商希望复合关联,希望快速实施,但事实上,现有的DPI的分析仅仅用了几张报表。数据散落在各种系统中无法进行有效的采集、分析。
此外,庞大的数据规模和复杂的数据种类也给运营商带来了管理层面的难题。对于电信运营商自身而言,每一个省、市公司都是相对独立的,仅一个省的单月计费清单数量就多达数十亿条,而大数据时代要求跨地域、跨业务的数据整合和分析,对运营商统一的数据整合和管理能力提出了非常高的要求。
谈及电信运营商在大数据时代的优势和机遇,通信记录着人们在现代社会的信息指纹,应结合自身的特殊数据来寻找潜在资源。电信运营商通过结合社会化数据,可以提高用户的体验;通过个人位置信息的分析、匹配,可以提供创新服务。数据的结合,在公共卫生、疾病防治、金融保险(放心保)等方面都会发挥作用。
运营商需自研大数据处理架构
大数据的价值需要通过云计算平台才能被充分发掘和体现。互联网大数据平台具备以下几个特点:
第一,规模大,数据集中存储和处理,无论是交易系统还是分析系统,数据规模均超过PB级。
第二,数据高可靠,系统高可用:数据采用多副本、纠删码、跨IDC等技术实现数据高可靠性。
第三,基于通用底层技术平台的高效定制化系统:采用通用的底层通用平台,针对应用特点定制大数据系统,获得更高性能。
资源共享:在多个应用之间共享存储和处理能力,利用率高达80%。
评论:
大数据蕴含巨大商业价值,运营商不能做“傻土豪”,坐拥金矿而不会开发利用是非常傻的事情,电信运营商拥有大数据,但是由于业务模式不同,大数据平台的研发和应用尚没有获得大规模发展,因此电信运营商需要开发适合自己的大数据处理架构,这样才能将大数据金矿价值开发出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15