京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【每周一期-数据蒋堂】非常规聚合
标准SQL中提供了五种最常用的聚合运算:SUM/COUNT/AVG/MIN/MAX。观察这几个运算,我们发现它们都可以看成是一个以集合为参数返回单值的函数,我们就先把这个共同点理解为聚合运算的定义,把集合变成单值,多个值变成一个值,也就是发生了"聚合“,所以叫聚合运算。
那么很显然,有集合的时候就可以应用聚合运算了,所以SUM/COUNT这些运算可以针对一个数据表(记录集合)实施。
分组运算的结果是一批分组子集,那么每个子集上也可以应用聚合运算,这也就是SQL的分组运算了。其实针对全集的聚合运算也可以理解为只分了一个组的特殊分组(也是个完全划分),这样理解后,我们可以认为聚合运算总是发生在分组运算之后(但分组运算后不一定总有聚合运算,前面已说过)。而且,还可以反过来说,只要被认定为是聚合运算(符合前述定义的运算),就一定可以用在分组之后。我们在下面会看到,这个理解将大幅度地扩展分组+聚合运算的应用范围。
除了这五种聚合运算外,有的数据库还提供了方差、标准差等聚合函数,其性质和这五种差不多,可以称为是常规的聚合运算。我们下面来研究业务上有意义的其它形式聚合运算。
1、返回记录
上述的常规聚合都是针对数值的运算,特别地,对于结构化数据来说,是针对某个字段(或表达式)的运算,返回值也是这些数值的运算结果。但有时候我们关心的不是结果数值本身,而是与结果数值相关的信息。
比如我们想从日志表中找出某个用户第一次登录时用的IP地址,而不是登录时刻。用标准SQL写这个运算大概是这样:
SELECT ip_address FROM LogTable WHERE user=? AND logintime=
(SELECT MIN(logintime) FROM LogTable WHERE user=?)
用子查询先计算出该用户的第一次登录的时刻,再查找出该时刻时用到的IP地址,这要把数据集遍历两次。
ORACLE提供了一个KEEP函数,可以不用子查询写出这样的运算:
SELECT MIN(ip_address) KEEP(DENSE_RANK FIRST ORDER BY logintime) FROM LogTable WHERE user=?
但是,我们关心的可能还不止是IP地址,还可能是日志表中的其它字段,比如所用浏览器、是否移动端等,其实就是关心最小值对应的那条完整记录。而由于SQL缺乏离散性,即使有KEEP函数,也不容易写出这种运算,要么每个字段分别用KEEP,要么还是用子查询遍历两次,都很繁琐。
如果有一个用于返回最大值/最小值对应记录而非值本身的聚合函数,那这个运算写起来就简单了,也只要遍历一次:
=LogTable.select(user=?).minp(logintime)
像前面说的,这样的聚合运算还可以用在GROUP中,比如找出每个用户首次登录的日志记录
=LogTable.group(user).(~.minp(logintime))
类似地,还可以有maxp方法用于返回最大值对应记录。
日志记录常常本来就是按事件发生时刻有序,利用这个特点时就不需要再用比较来计算最小值了,而是直接取出第一条即可。
=LogTable.select(user=?).first() // 聚合函数first返回第1个成员
在分组中也可以:
=LogTable.group(user).(~.first())
当然实际编码时也可以直接取集合成员,这里写成first只是为了强调可以把取某成员的动作理解为一种聚合运算。
这种运算较为常用,我们可以为group函数做一个选项:
=LogTable.group@1(user)
SQL建立在无序集合概念上,无法保证返回记录的次序,想写出这种运算就又需要人为制造序号后再用过滤条件来做。
2、返回集合
我们把上面的问题改一下:找出一群人中年龄最小的那些人的姓名。
和前述问题不同的是,同一个用户不会有多个相同的登录时间,但一批人中则可能有年龄相同的人,年龄最小的人可能不止一个。minp函数的返回值应当是一个集合才合理。
仔细观察我们在文章开始对聚合运算的定义,我们会发现,其实返回单值的要求并无必要,只要参数是集合,随便返回什么东西都可以认定为是聚合运算,这种定义下,返回集合的minp/maxp仍然可以作为聚合运算处理。
需要返回集合的聚合运算中,更常见是topN。
SQL并不把topN理解成一种聚合运算,而只是返回结果集时的一种修饰符。原理上,SQL会先把完整的结果集计算出来,然后再只取前N条返回。topN总是在排序动作之后,大集合的排序是个时间成本很高的动作,但其实只做topN并不需要全集的排序。这时候只能依靠数据库在工程上的优化,但这并不是总能做好的。另外,只作为结果集的修饰,那就不能把这个运算实施到分组子集上了,而且运算复杂化后优化也很难做了。
把topN理解成聚合运算后,一切都变得很轻松
=a=LogTable.select(user=?).top(logingtime,-2), a(2)-a(1) //某用户最后的两次登录时间间隔
=LogTable.groups(user;(a=~.top(logintime,-2),a(2)-a(1))) //每个用户最后的两次登录时间间隔
而且实施计算也不需要刻意地工程上优化,在分组后使用也能获得高性能。
topN也有返回记录的情况,即取出某个字段(表达式)在前N名的对应记录。和minp/maxp类似地,这需要再设计一个函数。
同样的,有序情况也会发生,像前面的日志计算,如果假定日志表已经针对事件时刻有序,那可以不必再用topN去做比较运算了。
=a=LogTable.select(user=?).last(2),a(2)-a(1) //聚合函数last(n)返回最后n个成员
=LogTable.groups(user;(a=~.last(2),a(2)-a(1)))
类似地,last函数也可以写成取集合成员的形式。
这里讨论了非常规聚合的两种常见情况,都是SQL不易支持的。当然按照定义还会有更多形式的聚合运算,即使这两种情况也还会有许多变种,比如取出排序位置居中的成员、取出针对某一字段的唯一值(DISTINCT)集合等。深入理解聚合运算及其与分组运算的关系,将能够扩展这些运算的应用范围,对计算的描述和实施都有不小的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01