
简单了解Python中的几种函数
python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter、map、reduce、lambda、yield
lambda
>>> g = lambda x,y:x+y #x+y,并返回结果
>>> g(3,4)
7
>>> (lambda x:x**2)(4) #返回4的平方
16
lambda函数的使用方法:
在lambda后面直接跟变量
变量后面是冒号
冒号后面是表达式,表达式计算结果就是本函数的返回值
冒号后面是表达式,表达式计算结果就是本函数的返回值
比如,要打印一个list,里面依次是某个数字的1次方,二次方,三次方,四次方。用lambda可以这样做:
>>> lamb = [ lambda x:x,lambda x:x**2,lambda x:x**3,lambda x:x**4 ]
>>> for i in lamb:
... print i(3),
...
3 9 27 81
map
map()是python的一个内置函数,它的基本样式是:
map(func,seq)
func是一个函数,seq是一个序列对象。在执行的时候,序列对象中的每个元素,按照从左到右的顺序,依次被取出来,并放入
到func那个函数里面,并将func的返回值依次存到一个list中。如
>>> items = [1,2,3,4,5]
>>> squared = []
>>> for i in items:
... squared.append(i**2)
...
>>> squared
[1, 4, 9, 16, 25]
>>> def sqr(x): return x**2
...
>>> map(sqr,items)
[1, 4, 9, 16, 25]
>>> map(lambda x: x**2, items)
[1, 4, 9, 16, 25]
>>> [ x**2 for x in items ] #这个我最喜欢了,一般情况下速度足够快,而且可读性强
[1, 4, 9, 16, 25]
要点:
对iterable中的每个元素,依次应用function的方法(本质上就是一个for循环)
将所有结果返回一个list
如果参数很多,则对那些参数并行执行function
继续下面两个例子:
>>> lst1 = [1,2,3,4,5]
>>> lst2 = [6,7,8,9,0]
>>> map(lambda x,y: x+y, lst1,lst2) #将两个列表中的对应项加起来,并返回一个结果列表
[7, 9, 11, 13, 5]
>>> lst1 = [1,2,3,4,5]
>>> lst2 = [6,7,8,9,0]
>>> lst3 = [7,8,9,2,1]
>>> map(lambda x,y,z: x+y+z, lst1,lst2,lst3)
[14, 17, 20, 15, 6]
可以看到map函数的强大和简洁。如果使用for循环将会很繁琐
reduce
直接看例子:
>>> reduce(lambda x,y: x+y,[1,2,3,4,5])
15
reduce函数的计算方式是将列表中的元素累加,((((1+2)+3)+4)+5)=15 与map函数相比较就可以看出两者之间的区别。map是上下运算,reduce是横着逐个元素进行运算。
reduce含可以接受第三个值作为初始值:例如
>>> reduce(lambda x,y: x+y,[1,2,3,4,5],100)
115
上述列表中计算将以100为初始值执行累加计算,先计算 100+1
filter
filter的中文含义是“过滤器”,在python中,它就是起到了过滤器的作用.
通过下面代码体会:
>>> numbers = range(-5,5)
>>> numbers
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
>>> filter(lambda x: x>0, numbers)
[1, 2, 3, 4]
>>> [x for x in numbers if x>0] #与上面那句等效
[1, 2, 3, 4]
>>> filter(lambda x: x > 3, [1,2,3,4,5])
[4,5]
拜读下filter的官方文档解释:
filter(...)
filter(function or None, sequence) -> list, tuple, or string
Return those items of sequence for which function(item) is true. If
function is None, return the items that are true. If sequence is a tuple
or string, return the same type, else return a list.
总结
以上就是本文关于简单了解Python中的几种函数的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27