京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单了解Python中的几种函数
python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter、map、reduce、lambda、yield
lambda
>>> g = lambda x,y:x+y #x+y,并返回结果
>>> g(3,4)
7
>>> (lambda x:x**2)(4) #返回4的平方
16
lambda函数的使用方法:
在lambda后面直接跟变量
变量后面是冒号
冒号后面是表达式,表达式计算结果就是本函数的返回值
冒号后面是表达式,表达式计算结果就是本函数的返回值

比如,要打印一个list,里面依次是某个数字的1次方,二次方,三次方,四次方。用lambda可以这样做:
>>> lamb = [ lambda x:x,lambda x:x**2,lambda x:x**3,lambda x:x**4 ]
>>> for i in lamb:
... print i(3),
...
3 9 27 81
map
map()是python的一个内置函数,它的基本样式是:
map(func,seq)
func是一个函数,seq是一个序列对象。在执行的时候,序列对象中的每个元素,按照从左到右的顺序,依次被取出来,并放入
到func那个函数里面,并将func的返回值依次存到一个list中。如
>>> items = [1,2,3,4,5]
>>> squared = []
>>> for i in items:
... squared.append(i**2)
...
>>> squared
[1, 4, 9, 16, 25]
>>> def sqr(x): return x**2
...
>>> map(sqr,items)
[1, 4, 9, 16, 25]
>>> map(lambda x: x**2, items)
[1, 4, 9, 16, 25]
>>> [ x**2 for x in items ] #这个我最喜欢了,一般情况下速度足够快,而且可读性强
[1, 4, 9, 16, 25]
要点:
对iterable中的每个元素,依次应用function的方法(本质上就是一个for循环)
将所有结果返回一个list
如果参数很多,则对那些参数并行执行function
继续下面两个例子:
>>> lst1 = [1,2,3,4,5]
>>> lst2 = [6,7,8,9,0]
>>> map(lambda x,y: x+y, lst1,lst2) #将两个列表中的对应项加起来,并返回一个结果列表
[7, 9, 11, 13, 5]
>>> lst1 = [1,2,3,4,5]
>>> lst2 = [6,7,8,9,0]
>>> lst3 = [7,8,9,2,1]
>>> map(lambda x,y,z: x+y+z, lst1,lst2,lst3)
[14, 17, 20, 15, 6]
可以看到map函数的强大和简洁。如果使用for循环将会很繁琐
reduce
直接看例子:
>>> reduce(lambda x,y: x+y,[1,2,3,4,5])
15
reduce函数的计算方式是将列表中的元素累加,((((1+2)+3)+4)+5)=15 与map函数相比较就可以看出两者之间的区别。map是上下运算,reduce是横着逐个元素进行运算。
reduce含可以接受第三个值作为初始值:例如
>>> reduce(lambda x,y: x+y,[1,2,3,4,5],100)
115
上述列表中计算将以100为初始值执行累加计算,先计算 100+1
filter
filter的中文含义是“过滤器”,在python中,它就是起到了过滤器的作用.
通过下面代码体会:
>>> numbers = range(-5,5)
>>> numbers
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
>>> filter(lambda x: x>0, numbers)
[1, 2, 3, 4]
>>> [x for x in numbers if x>0] #与上面那句等效
[1, 2, 3, 4]
>>> filter(lambda x: x > 3, [1,2,3,4,5])
[4,5]
拜读下filter的官方文档解释:
filter(...)
filter(function or None, sequence) -> list, tuple, or string
Return those items of sequence for which function(item) is true. If
function is None, return the items that are true. If sequence is a tuple
or string, return the same type, else return a list.
总结
以上就是本文关于简单了解Python中的几种函数的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15