
python 实例简述 k-近邻算法的基本原理
首先我们一个样本集合,也称为训练样本集,在训练样本集中每个数据都存在一个标签用来指明该数据的所属分类。在输入一个新的未知所属分类的数据后,将新数据的所有特征和样本集中的所有数据计算距离。从样本集中选择与新数据距离最近的 k 个样本,将 k 个样本中出现频次最多的分类作为新数据的分类,通常 k 是小于20的,这也是 k 的出处。
k近邻算法的优点:精度高,对异常值不敏感,无数据输入假定。
k 近邻算法的缺点:时间复杂度和空间复杂度高
数据范围:数值型和标称型
简单的k 近邻算法实现
第一步:使用 python 导入数据
from numpy import *
import operator
'''simple kNN test'''
#get test data
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
作为例子,直接创建数据集和标签,实际应用中往往是从文件中读取数据集和标签。array 是 numpy 提供的一种数据结构,用以存储同样类型的数据,除了常规数据类型外,其元素也可以是列表和元组。这里 group 就是元素数据类型为 list 的数据集。labels 是用列表表示的标签集合。其中 group 和 labels 中的数据元素一一对应,比如数据点[1.0,1.1]标签是 A,数据点[0,0.1]标签是 B。
第二步:实施 kNN 算法
kNN 算法的自然语言描述如下:
1. 计算已知类别数据集中的所有点与未分类点之间的距离。
2. 将数据集中的点按照与未分类点的距离递增排序。
3. 选出数据集中的与未分类点间距离最近的 n 个点。
4. 统计这 n 个点中所属类别出现的频次。
5. 返回这 n 个点中出现频次最高的那个类别。
实现代码:
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
classify0函数中的四个参数含义分别如下:inX 是希望被分类的数据点的属性向量,dataSet 是训练数据集向量,labels 是标签向量,k 是 kNN 算法的参数 k。
接下来来看看本函数的语句都做了那些事。
第一行dataSetSize=dataSet.shape[0],dataSet 是 array 类型,那么dataSet.shape表示 dataSet 的维度矩阵,dataSet.shape[0]表示第二维的长度,dataSet.shape[1]表示第一维的长度。在这里dataSetSize 表示训练数据集中有几条数据。
第二行tile(inX,(dataSetSize,1))函数用以返回一个将 inX 以矩阵形式重复(dataSetSize,1)遍的array,这样产生的矩阵减去训练数据集矩阵就获得了要分类的向量和每一个数据点的属性差,也就是 diffMat。
第三行**在 python 中代表乘方,那么sqDiffMat也就是属性差的乘方矩阵。
第四行array 的 sum 函数若是加入 axis=1的参数就表示要将矩阵中一行的数据相加,这样,sqDistances的每一个数据就代表输入向量和训练数据点的距离的平方了。
第五行不解释,得到了输入向量和训练数据点的距离矩阵。
第六行sortedDistIndicies=distances.argsort(),其中 argsort 函数用以返回排序的索引结果,直接使用 argsort 默认返回第一维的升序排序的索引结果。
然后创建一个字典。
接下来进行 k 次循环,每一次循环中,找到 i 对应的数据的标签,并将其所在字典的值加一,然后对字典进行递减的按 value 的排序。
这样循环完成后,classCount 字典的第一个值就是kNN 算法的返回结果了,也就是出现最多次数的那个标签。
二维的欧式距离公式如下,很简单:
相同的,比如说四维欧式距离公式如下:
第三步:测试分类器
在测试 kNN 算法结果的时候,其实就是讨论分类器性能,至于如何改进分类器性能将在后续学习研究中探讨,现在,用正确率来评估分类器就可以了。完美分类器的正确率为1,最差分类器的正确率为0,由于分类时类别可能有多种,注意在分类大于2时,最差分类器是不能直接转化为完美分类器的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13