
有些分歧是表面的,例如决策树可以对付缺失值,而逻辑回归需要挖掘人员预先对缺失数据进行处理。但实际上决策树同样要对缺失值做出某种假设和处理。例如CART在遇到一个变量中有缺失情况时,是用次级变量进行替换切分。这种做法在逻辑回归中也可以办到,但需要单独的编程。而在决策树中,这一步已经嵌入软件的算法引擎。
1.逻辑回归对数据整体结构的分析优于决策树,而决策树对局部结构的分析优于逻辑回归。
2.逻辑回归擅长分析线性关系,而决策树对线性关系的把握较差。虽然对付非线性关系是决策树的强项,但是很多非线性关系完全可以用线性关系作为近似,而且效果很好。线性关系在实践中有很多优点:简洁,易理解,可以在一定程度上防止对数据的过度拟合。
3.逻辑回归对极值比较敏感,容易受极端值的影响,而决策树在这方面表现较好。
两者的差别主要来自算法逻辑。决策树由于采用分割的方法,所以能够深入数据细部,但同时失去了对全局的把握。一个分层一旦形成,它和别的层面或节点的关系就被切断了,以后的挖掘只能在局部中进行。同时由于切分,样本数量不断萎缩,所以无法支持对多变量的同时检验。而逻辑回归,始终着眼整个数据的拟合,所以对全局把握较好。但无法兼顾局部数据,或者说缺乏探查局部结构的内在机制。
除外,逻辑回归和决策树还有一些应用上的区别。决策树的结果和逻辑回归相比略显粗糙。逻辑回归原则上可以提供数据中每个观察点的概率,而决策树只能把挖掘对象分为有限的概率组群。比如决策树确定17个节点,全部人口就只能有17个概率,在应用上受到一定限制。就操作来说,决策树比较容易上手,需要的数据预处理较少,而逻辑回归则要求一定的训练和技巧。
对于两者间互补或增强,主要思路是利用决策树对局部数据结构优越的把握能力增加逻辑回归的效力。在具体做法上有几种,一种是从决策树分析中找出数据局部结构,作为在逻辑回归中构建依变量(interaction)的依据。另一种是在需要对预测因子进行离散化处理时,利用决策树分析决定最佳切分点。还有一种是把决策树分类的最终结果作为预测变量,和其他协变量一起代入回归模型,又称为“嫁接式模型”。从理论上讲,嫁接模型综合了决策树和逻辑回归的优点。最终节点包含了数据中重要的局部结构,而协变量可以拾补被决策树遗漏的数据整体结构。
嫁接模型是一个很巧妙的设计,但是在实践中并没有得到普遍的认同。由于决策树已经对数据进行了最大限度的拟合,所以留给协变量的余地很小。换句话说,把决策树的最终节点作为预测因子,就可能找不出还有独立作用的协变量。而没有协变量,逻辑回归实际只是决策树的重复。再有,由于节点是多个属性的综合,不易解释。每个节点到底代表什么不明确,由此限制了这种方法的推广。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15