京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要充分利用 但更要保护用户隐私
全球进入移动互联网时代后,一个巨大进步是一切活动都在往移动互联网这个舞台上转移。所有社会活动、金融交易等都在网络上留下了痕迹或者说有迹可循。由此带来的进步是革命性、历史性和颠覆性的。
通过对人们在网络上留下的印记进行采集、挖掘、提炼与分析,可以分析出背后许多经济金融文化等有巨大价值的东西。思想支配行动,行动又反映思想。从网络上的留印行动中挖掘分析后就可以基本得出其思想所在,从网络上对一个主体各个方面留痕进行大挖掘、大计算、大分析基本就可以摸清楚预测出来这个主体想要什么,需求何在?这就可以分类施策、细分客户、精准营销。这个商业价值是无限的。
此前,马云曾讲过,大数据、云计算诞生以后,经济或可以进入到计划经济体制里。计划经济与市场经济都是配置资源的手段。计划经济之所以比市场经济在效率等方面低、弊端多,不在于计划经济体制本身,而在于没有技术等手段与能力来实现计划经济的高效性与准确性。现在有了网络,有了网上大数据的积累,有了云计算,或给计划经济以重新复活的机会,给了计划经济体制优越性以证明的机会。插上大数据、云计算翅膀的计划经济或比市场经济更加高效,更加精准,对市场的周期性破坏或就此消失。
这就是所说的大数据是一座大金库的原因。不过,这个大金库要充分挖掘与发挥出来的话,一个大前提是要对大数据进行充分采集、挖掘、整理、甄别、分类、分析等。这个大数据中包括你我他几乎全部在网络上的百姓民众消费者。也就是说,每一个在网络上留下印记即数据的你我他都是被分析的对象。这就牵扯到另一个问题:隐私保护问题。
近期,用户在查阅自己的支付宝年度账单时默认勾选“我同意《芝麻服务协议》”这件事引起一阵波澜,蚂蚁金服也回应道歉了。无论处于什么好意,默认勾选“同意”肯定是不合适的。不过,从这件事中的一些争论反应看,确实存在着一些对大数据在采集使用与隐私保护上的较大偏差甚至是糊涂认识,需要以理性的思考予以梳理厘清。
只要你在网络上留下了印记即数据基本上没有隐私可言。即使线下交易也基本如此。例如:过去你到银行办理存款贷款汇款,你到房管所办理房子登记过户,你到派出所办理户口入户迁移,你办理入学入托上大学等等都要登记家庭、身份证、电话等基本情况与信息。现在在网络上同样如此。只要存在这些情况,你的信息或者隐私就已经裸露出来了。
这里一个关键问题必须甄别清楚,每一个人在网络积累的大数据不让采集挖掘分析使用可能是做不到的。关键在于如何使用?在于使用后一定要为客户的隐私以及普通信息数据保密。保密,是问题的关键所在。只要有交易,就一定要使用你的数据。比如,你有贷款信用需求,这个金融交易一定要充分使用你的数据信息的。关键在于使用以后,不能泄露给第三方。所谓的保护隐私数据,主要的问题就在这里。
非金融信用业务也有保护数据信息隐私问题。你去一个网站注册、你想使用共享单车都需要注册相关信息数据的。注册这些数据信息以后,你不能说不让网站等挖掘使用你的数据信息,注册时也等于是一种交易,除非你不注册。关键问题还在于,网站、共享单车等使用客户数据后,一定要为客户保密。
这里面牵扯第三方使用数据如何办的问题。我个人认为,牵扯所有经济体的金融信用数据问题,各大平台包括央行在内都可以共享信用等级数据。目的在于形成一种“有信走遍天下,无信寸步难行”的社会氛围与高压态势,使有信用者得以提倡褒扬,无信用者如过街老鼠人人喊打。全社会形成:信用贵如金子,无信耻辱透顶,这才能形成信用的正向激励机制。
第三方使用其他数据,网站等平台应该通过协议约束征得被采集人的同意。同样,必须有约束条款,第三方也必须为客户数据信息保密。
总之,大数据这座金矿必须充分利用使用与挖掘开采,不能造成大数据资源的闲置和浪费,同时,使用以后关键在于要保护好被采集数据者的数据信息以及隐私。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15