京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python数据分析常用函数笔记
1、生成随机数列表
import numpy as np
array = np.random.permutation(20)
结果:
array([12, 18, 16, 8, 10, 17, 1, 2, 9, 7, 3, 6, 15, 13, 11, 5, 4, 0, 14, 19])
2、合并两个pandas.DataFrame数据集
import pandas as pd
data1 = {'A1':['A','B','C','D','E','F','G'],
'A2':[1,2,3,4,5,6,7]}
data2 = {'A1':['H','I','J','K','L','M','N'],
'A2':[8,9,10,11,12,13,14]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
frames = [df1, df2] #将两个DataFrame数据放入列表
df = pd.concat(frames)

3、pandas.DataFrame保存CSV文件
df.to_csv("D://df_test.csv", index = False)
index=False,表示不保存索引值,若为True,则保存索引值
4、 # 查看列的名字
df.columns
5、查看所有列的统计描述,包括平均值,标准差,最大最小值,以及25%,50%,75%的 percentile 值
df.describe()
6、Pandas 与 matplotlib 配合使用进行作图
# 首先打开图表行内显示
%matplotlib inline
# 生成600个随机数(符合正态分布),存放在 Series 或 DataFrame 的某一列中
nd = pd.Series(np.random.randn(600))
# bins 表示直方图的方块数
# range 表示图表显示的范围
nd.hist(bins=100, range=(-5,5))
结果如图所示:

7、按轴进行排序
train_df[['job', 'education', 'age', 'marital']].sort_index(axis=1, ascending=False).head()

8、DataFrame 合并
df1 = pd.DataFrame(...)
df2 = pd.DataFrame(...)
df3 = pd.DataFrame(...)
li = list()
li .append(df1)
li .append(df2)
li .append(df3)
df = pd.concat(li)
9、写入、读取Excel文件
写入Excel文件:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
从Excel文件中读取:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
10、读取CSV文件
iris = pd.read_csv(iris_filename, sep=',', decimal='.', header=None, names= ['sepal_length','sepal_width','petal_length','petal_width', 'target']
除了文件名,read_csv函数还可以指定分隔符(sep)、小数点的表达方式(decimal)、是否要标题行(本例中,header=None;通常情况下,如果有标题行,header=0)和变量名称(若全部列检索,则该项可省略)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15