京公网安备 11010802034615号
经营许可证编号:京B2-20210330
STATA软件是一款国际上非常流行的优秀的统计软件,是众多研究机构和公司在数据分析中的首选软件,并被很多国家和国际组织指定为官方使用软件。
STATA强大的统计与计量分析功能、精致的绘图、简单易行的窗口操作、简练便捷的编程、强大的MATA矩阵运算、丰富的网络资源等功能使其成为世界上用户最多的软件之一,被高度评价为“数据分析的操作系统”,可以实现诸多的统计分析方法,如单元统计、多元统计等内容;还包括了许多经典和前沿的计量模型,如单方程回归模型、离散选择模型、分位数回归、时间序列分析、面板数据分析、蒙特卡洛模拟和自举法等。
有效提升论文发表与Stata应用技能
时间:初级:2018年1月13-16日 (四天)
讲师介绍:
连玉君,经济学博士,副教授。2007年7月毕业于西安交通大学金禾经济研究中心,现任教于中山大学岭南学院金融系。主讲课程为“金融计量”、“计量分析与Stata应用”、“实证金融”等。
已在《China Economic Review》、《经济研究》、《管理世界》、《经济学(季刊)》、《金融研究》、《统计研究》等期刊发表论文60余篇。连玉君副教授主持国家自然科学基金项目(2项)、教育部人文社科基金项目、广东自然科学基金项目等课题项目10余项。
目前已完成Panel VAR、Panel Threshold、Two-tier Stochastic Frontier等计量模型的Stata实现程序,并编写过几十个小程序,如xtbalance、winsor2、bdiff、hausmanxt、ttable3、hhi5等。
初级班课程大纲
|
专题名称 |
授课内容 |
|
第1讲(3小时) Stata简介 |
数据的导入和导出 执行指令和基本统计分析 do文件和log文件的使用 帮助文件的使用和外部命令的获取 一篇范例文档 |
|
第2讲(3小时) 数据处理 |
数据的横向合并和纵向追加 重复样本值、缺漏值和离群值的处理 基本统计量的呈现 基本统计分析(组间均值差异和中位数差异检验) 文字变量的处理 大型数据的处理范例(GTA数据库和工业企业数据库) |
|
第3讲(3小时) Stata程序 |
局域暂元和全局暂元(local, global) 控制语句(条件语句、循环语句) Stata中的各类函数 分组回归分析 范例:盈余管理程度的估算、现金持有调整系数的估算 |
|
第4讲(3小时) 普通最小二乘法 (OLS) |
线性回归模型估计方法(OLS) 假设检验和统计推断 Bootstrap、Jackknife及稳健性标准误的获取 虚拟变量 |
|
第5讲(3小时) 模型的设定和解释 |
交乘项和平方项的使用及解释 R2分解和贡献度分析 分组回归和组间系数差异检验 估计结果的呈现和分析 范文2篇 |
|
第6讲(3小时) 内生性问题及估计方法: IV-GMM 倍分法(DID, D-in-D) |
工具变量法(IV) 广义矩估计法(GMM)简介 内生性检验:是否存在内生性 过度识别检验:工具变量的合理性 倍分法(Difference in Difference)简介 PSM-DID 应用实例(介绍2篇论文) |
|
第7讲(3小时) 静态面板数据模型 |
静态面板模型:固定效应和随机效应 基于Bootstrap的Hausman检验 异方差和序列相关(Bootstrap、Cluster调整标准误) 包含内生变量的固定效应模型 实证分析中的常见问题 应用实例(介绍3篇论文) |
|
第8讲(3小时) 论文写作与发表专题 |
Endnote和Google Scholar的使用 论文的选题 如何梳理和评述文献 研究贡献的陈述 研究设计与论文的修改 修改报告的撰写 (与审稿人有效沟通) |
高级班课程大纲
|
第1讲(3小时) 动态面板模型 面板VAR模型 |
一阶差分GMM估计量(FD-GMM) 序列相关检验和过度识别检验(Sargan检验) 面板VAR模型简介 冲击反应函数 (IRF)、方差分解 (FEVD) 应用实例(介绍3篇论文) |
|
第2讲(3小时) 面板门槛模型 |
Bootstrap简介 截面门槛模型(Cross-sectional Threshold Model) 面板门槛模型(Panel Threshold Model) 应用实例(介绍2篇论文) |
|
第3讲(3小时) Logit模型 |
Logit模型简介 模型设定、估计方法和结果的解释 多元Logit模型 (Multinomial Logit) 有序Logit模型 (Ordered Logit) 应用实例(介绍2篇论文) |
|
第4讲(3小时) 内生性问题专题I: Heckman选择模型 处理效应模型 倾向得分匹配分析(PSM) |
Heckman选择模型(Heckman Selection Model) 处理效应模型(Treatment Effect Model) 倾向得分匹配分析(Propensity Score Matching, PSM) 配对方法:精确配对、半径匹配、最近邻匹配等 共同支撑假设和平行假设 应用实例(介绍2篇论文) |
|
第5讲(3小时) 内生性问题专题II: 合成控制法 (Synthetic control methods) |
合成控制法简介 精讲一篇经典论文(Stata实现过程):Abadie, A., A. Diamond, J. Hainmueller, 2010, Synthetic control methods for comparative case studies: Estimating the effect of california's tobacco control program, Journal of the American Statistical Association, 105 (490): 493-505. |
|
第6讲(3小时) 内生性问题专题III: 断点回归分析(RDD) |
Regression Discontinuity Design (RDD) 简介 范例:2篇文章 |
|
第7讲(3小时) 学术论文精讲 Faulkender and Wang (2006, JF) |
Faulkender, M., R. Wang, 2006, Corporate Financial Policy and the Value of Cash, Journal of Finance, 61 (4): 1957-1990.
|
|
第8讲(3小时) 课题标书的撰写 |
评审专家的习惯和偏好 关于选题和子课题的设定 研究基础、研究目标、研究内容、研究难点 特色和创新点的提炼 标书的结构和标书的修改 经验分享:一份中标的自科标书 |
1. 无论报初级班还是高级班,缴费成功后都享受如下优惠:
√ (a)赠送与所报课程相同的stata视频教程,
即报初级班送初级班视频,报高级班送高级班视频,报全程送【初级+高级+论文攻略】视频;
√ (b)5折优惠购买未赠送的其他Stata视频;
2,现场班老学员9折优惠;
6,优惠2,3,4,5不叠加。
PS:根据报名缴费顺序安排现场座位。
报名流程:
1. 点击“初级/高级/全程班报名”网上提交报名信息,报名时请留言报全程还是初级,高级~
2. 电话确认,订单缴费;
3. 缴费确认,开课前一周发送软件准备,电子版讲义;
联系方式:
魏老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27