京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据价值何在(1)_数据分析师
《孙子兵法》说:“多算胜,少算不胜。”今天,决定能否“多算”的重要因素在于,掌握数据的多少以及对数据处理能力的高低。有了大数据对象、大数据处理与应用的技术,再与各类实际应用需求相结合,大数据将给经济社会发展带来巨大影响。
惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值
安晖:当前,全球的数据总量正呈指数增长,过去3年间产生的数据量超过以往总和。移动互联网、物联网等的迅速发展,使新数据源不断出现,GPS、传感器等数据持续、大量产生。而数据获取成本、存储成本和处理成本的下降,也推动了数据量的膨胀。
美国麦肯锡全球研究院2011年6月发布题为《大数据:下一个创新、竞争和生产力的前沿》的研究报告,指出“大数据时代已经到来”,数据正成为与物质资产和人力资本相提并论的重要生产要素,大数据的使用将成为未来提高竞争力的关键要素。美国政府于2012年3月宣布“大数据的研究和发展计划”,以提高对大数据的收集与分析能力,增强国家竞争力。
其实,不仅是美国,其他一些国家也都把大数据提升到国家战略层面,认为未来国家层面的竞争力将部分体现为一国拥有数据的规模及运用数据的能力。有学者把大数据形象地比喻为推动人类社会发展的“新石油”。
信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。
大数据技术是从各种各样类型的大数据中,快速获得有价值信息的技术,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。
大数据应用是对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
肯尼思·丘基尔:大数据一般是指一整套新的技术,分析社会中存在的比以往多得多的信息,通过这些新的分析工具,我们能从大量信息中发现一些有价值的东西。一些技术,如非线性或网络映射、机器学习等都是大数据分析的一个侧面。不管是在生物科学研究,还是在确定一个城市可能发生火灾的位置等公共政策问题上,大数据都在给世界带来变革,因为人类有史以来第一次可以真正地收集海量的信息。
吴辅世:“大数据”只是一个相对的概念。大数据可以是多种类海量数据,它挑战传统分析技术,正推动分析技术行业革新。这种革新始于企业需要处理这些数量庞大又变化迅速的数据,而旧的分析技术已无法满足需求。新数据分析技术和旧技术的不同之处在于:一方面,数据膨胀要求数据挖掘和统计分析技术性能的飞跃。另一方面,不同规模的企业如今都面临大数据时代带来的挑战,分析技术必须朝着平民化、易操作化方向发展:简单易懂、容易操作并且能为各类企业所用。SAS可视化分析解决方案就是一个很好的例子,即使使用者毫无数据分析专业背景,也能通过直观的图形界面轻松地进行数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28