京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据提升政府治理能力
互联网是我国在全球经济当中跟西方发达国家距离比较近的领域之一,或者说是我们发展比较好的领域。以互联网为平台打造现代的信息经济,对扩大投资消费,提升老百姓的生活便利性,都具有重要的促进作用。同时,互联网越发达,所产生的数据信息越多,数据已成为国家基础性战略资源,大数据正日益对全球经济运行机制、社会生活方式和国家治理能力产生重要影响。国务院印发的《促进大数据发展行动纲要》指出,大数据已成为“提升政府治理能力的新途径”。这就要求各级政府树立大数据思维,借助大数据手段推动政府管理理念和社会治理模式进步,实现国家治理体系和治理能力现代化。
提升政府治理能力面临艰巨挑战。政务的大数据与政府治理面临的问题是相互联系的,既面临外部挑战,也有内部挑战。从外部来讲,一是捍卫国家主权、维护国家利益和尊严;二是维护经济全球化、自由贸易的世界秩序;三是如何应对东北亚朝核危机,毕竟从建国以来,我们和南韩北韩关系都比较紧张是很少见的。从内部来讲,一是决胜全面小康进入关键时期,脱贫压力加大;二是全面深化改革进入深水区,各种社会矛盾凸显;三是民生问题公众诉求强烈;四是管控公权面临短板。社会结构和利益格局正在发生变化,政府需要处理、应对的公共事务的规模和种类海量增长,复杂程度前所未有,传统的治理模式面临严峻挑战。从群众需求看,随着物质生活条件逐步改善,特别是互联网、大数据广泛运用,人民群众对政务服务、民生保障的需求呈现出个性化、多样化的新特点,对服务的体验感、参与感、精准化提出更高要求,既有的强调标准化服务的“老办法”,也面临多样化、个性化需求的“新问题”。
以大数据提升政府治理能力是大势所趋。面对政府治理现代化过程中不断出现的问题和挑战,要运用大数据提升国家治理现代化水平,以推行电子政务、建设智慧城市等为抓手,以数据集中和共享为途径,推动技术融合、业务融合、数据融合,打通信息壁垒,形成覆盖全国、统筹利用、统一接入的数据共享大平台,构建全国信息资源共享体系,实现跨层级、跨地域、跨系统、跨部门、跨业务的协同管理和服务。利用大数据平台,考验综合分析风险因素,提高对风险因素的感知、预测、防范能力。大数据战略的提出,为政府治理能力开辟了一条新的路径。在大数据时代,迫切要求政府治理加快由封闭管理向开放治理转变,由单向管理向协同治理转变,由被动响应向主动服务转变,由定性管理向定量管理转变,由粗放管理向精准化管理转变,由运动式管理向常规性管理转变。因此,大数据将成为加快政府治理能力现代化的最重要、最有力推手。
以大数据提升政府治理能力。大数据在政府治理方面应用前景广阔、使用价值巨大,关键是要构建起一套“用数据说话、用数据决策、用数据管理、用数据创新”的全新机制。以大数据助推权力制约无缝化、以大数据助推政府决策科学化、以大数据助推政务管理精准化、以大数据助推公共服务多样化、以大数据助推治理模式多元化。近年来,以简政放权和审批制改革为重点的政府改革正在深入,在这些大刀阔斧的改革当中,简政放权、放管结合、优化服务是最显著的特征。同时,审批和监管体制改革,实行审管分离、县域综合执法等方面的行政审批改革探索。由于政府决策、施策的事项纷繁复杂,各类矛盾交织、各种变量融合的情况比比皆是。缺乏数据支撑的决策特别是凭经验作出的决策,往往“顾此失彼”,科学性、前瞻性不够。政府应借助大数据手段,利用数据关联分析、数学建模、虚拟仿真乃至人工智能等技术,在基于广泛、大量数据的基础上进行模块化分析和政策模拟,为决策提供更为系统、准确、科学的参考依据,为决策实施提供更为全面、可靠的实时跟踪,推动政府决策由过去的经验型、估计型向数据分析型转变,最终实现政府决策机制再造,并借助大数据打造整体政府、开放政府、协同政府、智慧政府,提高政府治理能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15