
关于Execl导入大数据量文件的处理思路
Execl作为微软的早期产品,功能强大的同时,性能也相应的差很多,处理大数据量时,尤其明显。最近项目中有一个需求,要求导入人员信息,Execl的数据量大概5000左右,但是会关联其他表,查询出100万级别的数据量,插入到值表。并且这个过程是系统管理人员每月不定期在页面导入的。系统设计的要求是10秒内完成。
简单说一下我们的思路,这里主要说思路,更细节的技术问题,可以和我联系:
第一步:把Excel转成CSV文件,这里可以是系统使用人员手动转换,也可以由程序来转换。
然后先导入Excel中的5000条信息到人员信息表。后台数据库用存储过程实现,使用merge的方式进行增量导入。
第二步:关联其他表,然后将符合条件的结果集作为值直接插入到临时表,这个过程也是在存储过程中实现。这里有一个技巧,把SELECT的结果集,作为INSERT语句的VALUES,这样能比逐条处理速度要快很多。
第三步:使用MERGE的方式,将临时表的数据,增量导入目标表。这个过程也在存储过程中
实现。
以上的案例,数据校验的逻辑不是很多,只有一个重复性校验,所以使用的是MERGE方式。如果业务上的数据校验逻辑比较复杂,可能性能就会降低很多,这时就要考虑其他解决方案。
上面的SQL关键代码,基本上都放在了存储过程中,之所以这样做,就是为了提高性能。在进行大数据量的操作时,每减少一次数据库交互,可能就会明显提高性能。我们都知道,存储过程存储在数据库服务器端,属于已经预编译过的SQL,当调用存储过程时,只需要传递参数,而不需要再重新编译SQL。并且,把多个SQL放在一个存储过程中,减少了应用服务器与数据库服务器的交互次数。
关于上面的案例,还有2点要说明。
1,在处理大数据量的文件时,尽量减少逐行扫描的方式,,而是采用批量LOAD/IMPORT,或者批量MERGE/INSERT的方式。
2,建适当数量的索引,无论对于INSERT操作,还是MERGE操作,都会起到事半功倍的效果。
最近项目中在进行性能优化,关于Execl的导入导出,以及大数据量的查询,都研究了好长时间,之前的查询慢、导入慢,导出慢的问题,基本上都解决了,性能提高了不少,后面有时间会慢慢和大家分享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29