
如今,数据挖掘主要用于消费者所聚焦的公司如零售、金融、通讯以及一些销售组织,深入挖掘他们的交易数据,确定价格、消费者喜好以及产品定位,影响销售、消费者满意度以及公司的利润。通过数据挖掘,零售商可使用消费者购买的销售点记录开发产品和促销活动来吸引特定的客户群。
Data Mining is primarily used today by companies with a strong consumer focus — retail, financial, communication, and marketing organizations, to “drill down” into their transactional data and determine pricing, customer preferences and product positioning, impact on sales, customer satisfaction and corporate profits. With data mining, a retailer can use point-of-sale records of customer purchases to develop products and promotions to appeal to specific customer segments.
以下是14个数据挖掘被广泛使用的重要领域:
Future Healthcare(未来卫生保健)
数据挖掘具有改进健康系统的巨大潜力。它用数据和分析来确定改善护理、降低成本的最佳做法。研究者们使用数据挖掘方法,比如多维数据库、机器学习、软计算、数据可视化和统计。挖掘可以被用来预测各类病人的体积。这个过程的发展以确保病人在正确的时间地点接受恰当的护理。数据挖掘也能帮助医疗保险公司来辨别欺诈和滥用。
Market Basket Analysis(购物篮分析)
购物篮分析是一种基于理论的模型化技术,如果你购买某组确定的商品,那么你也更有可能购买另一组商品。这种技术可以让零售商了解消费者的购买行为。同时,这个消息也能帮助零售商了解消费者的需求并以此改变商店的布局。使用差异分析比较不同店铺之间的结果,可以在不同人口群体的客户之间进行比较。
Education(教育)
这是一个新兴的领域——教育数据挖掘,关注的是开发方法,发现来自教育环境的数据知识。教育数据挖掘的目标被确定为预测学生的未来学习行为,研究教育支持的影响以及提高科学知识学习。数据挖掘可以被某个机构用来做正确的决定也能预测学生的决定。根据机构的结果可以关注于教什么以及如何去教。学生的学习模式可以被捕捉并用于开发技巧来教他们。
Manufacturing Engineering(制造工程)
知识是制造企业拥有的最好的资产。数据挖掘工具对于发现复杂的制造过程中的模型非常有用。数据挖掘可以被用在系统级设计,以提取产品架构、产品组合以及客户需求数据之间的关系。同时也能用来预测产品开始工时数、成本以及其他任务之间的依赖关系。
CRM(客户关系管理)
客户关系管理就是获得和保留客户,同时提高客户的忠诚度并实施以客户为中心的策略。为了与客户维持一个适当的关系,企业需要收集数据并分析信息。这是数据挖掘的一部分。利用数据挖掘技术,收集的数据可以用来分析。而不是困惑在哪里集中留住客户,解决方案的搜索者将得到过滤结果。
Fraud Detection(欺诈检测)
欺诈行为已经损失了数十亿美元。欺诈检测的传统方法是费事和复杂的。数据挖掘有助于提供有意义的模式并将数据转化为信息。任何有效有用的信息都是知识。一个完美的欺诈检测系统应保护所有用户的信息。监督方法包括收集样本记录。这些记录被分类为欺诈或非欺诈。用数据建立一个模型,并用运算法则来确定该记录是否是欺诈性的。
Intrusion Detection(入侵检测)
任何会损害资源完整性和机密性的行为都是入侵行为。避免入侵的防御措施包括用户认证、避免编程错误和信息保护。数据挖掘可以通过在异常检测中增加关注级别来帮助改进入侵检测。它有助于分析师将活动与日常的网络活动区分开来。数据挖掘还有助于提取与问题更相关的数据。
Lie Detection(谎言检测)
拘留一个罪犯是容易的,然而让他说出真相是困难的。法律的实施可用挖掘技术来调查犯罪,监测涉嫌恐怖分子的交流。这个领域也包括文字挖掘。这个过程试图找到通常是非结构化文本的数据中有意义的模式。从之前的调查中搜集的数据样本进行比较,并创建一个谎言检测模型。有了这个模型,就可以根据需要创建流程。
Customer Segmentation(客户细分)
传统的市场研究能帮助我们细分客户但数据挖掘深入并提高市场效率。数据挖掘有助于将客户整合到不同的细分市场也可以根据客户量身定制需求。市场始终关乎留住客户。数据挖掘允许根据漏洞找到一部分客户,业务部门可以为他们提供特别优惠并提高满意度。
Financial Banking(金融银行)
随着计算机化的银行业,到处都有大量的数据是由新的交易产生的。数据挖掘可以通过查找商业信息中的模式,因果关系和相关性来帮助解决银行和金融方面的业务问题。而市场价格对管理者来说并不是很明显,因为数据量太大或者产生得太快而不能被专家筛选。管理人员可以找到这些信息,以更好地细分,定位,获取,保留和维护一个有利可图的客户。
Corporate Surveillance(公司监管)
公司监督是对一个人或一个组织的行为进行监督。收集的数据最常用于市场营销或出售给其他公司,但也经常与政府机构分享。它可以被企业用来定制他们的顾客所需的产品。这些数据可以用于直接的市场营销目的,例如Google和Yahoo上的针对性广告,通过分析搜索历史记录和电子邮件,将广告定位到搜索引擎的用户。
Research Analysis(研究分析)
历史表明,我们见证了革命性的研究变化。数据挖掘有助于数据清理,数据预处理和数据库集成。研究人员可以从数据库中找到任何可能带来研究变化的类似数据。可以知道任何同现序列的识别和任何活动之间的相关性。数据可视化和可视化数据挖掘为我们提供了清晰的数据视图。
Criminal Investigation(刑事侦查)
犯罪学是一个旨在识别犯罪特征的过程。事实上,犯罪分析包括探索和侦查犯罪及其与罪犯的关系。大量的犯罪数据集以及这些数据之间关系的复杂性使犯罪学成为应用数据挖掘技术的适当领域。基于文本的犯罪报告可以转换成文字处理文件。这些信息可以用来执行犯罪匹配过程。
Bio Informatics(生物信息学)
数据挖掘方法似乎非常适合生物信息学,因为它数据丰富。挖掘生物学数据有助于从生物学和其他相关生命科学领域(如医学和神经科学)收集的大量数据中提取有用的知识。数据挖掘在生物信息学中的应用包括基因发现,蛋白质功能推断,疾病诊断,疾病预后,疾病治疗优化,蛋白质和基因相互作用网络重建,数据清理和蛋白质亚细胞定位预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05