
“数字中国”:领跑大数据时代
按照维基百科的定义,大数据是指无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。
“大数据除了规模大外,还有复杂的一面。”中国工程院院士毛二可向《中国科学报》记者举了个例子:比如医生要了解某种疾病在全世界有多少例,怎么治?大数据可以告诉你在某一问题上怎么做是最科学的。
毛二可的科研工作经历了在图书馆查资料、从互联网上获取信息,再到大数据分析的阶段,他认为,大数据提供了一种比过去效率提高很多倍的方法和手段。
Hadoop创始人、大数据之父Doug Cutting曾表示,本世纪我们取得的许多进展,将会来自我们对所生成数据的更多理解。
实践证明,数据驱动的科学研究已经成为新的范式,同时我们还有数据驱动产业的创新,像滴滴打车、共享单车、微信、O2O零售等,都是大数据时代的产物。
正像中国航天系统科学与工程研究院院长薛惠锋说的,在这个时代,虚拟数字空间与现实世界平行存在、精准映射、深度交融,使一切物质皆可用数据量化,一切行为皆可用数据写真,一切关联皆可用数据表征,一切趋势皆可用数据预测。
超学科人才培养是首要问题
数据是基础性资源,也是重要生产力。复旦大学教授毛扬勇表示,全球范围内,运用大数据推动经济发展、完善社会治理、提升政府服务和监管能力正成为趋势。
18年前,习近平总书记以“战略+”的高瞻远瞩,顺应互联网发展的历史潮流,在福建率先提出了“数字福建”的构想。今天,这一伟大创新不仅在八闽大地落地生根,而且上升为重大战略,“数字中国”的建设已经成为推动经济社会发展的强大引擎。
毛扬勇认为,实施国家大数据战略,是综合国际环境、技术趋势和中国形势作出的战略决策,必须把握大数据带来的战略机会,提升政府治理能力、实现经济转型升级。
“大数据要在中国强起来,第一个解决的问题就是‘人’。”毛扬勇接受《中国科学报》采访时直言,“发展大数据需要人才,而且需要我们自己来培养。”
2013年《哈佛商业评论》提出,“数据科学家是21世纪最性感的职业。”但遗憾的是,大数据人才短缺已成为全球性的问题。2012年麦肯锡曾预测,未来6年,仅在美国本土就可能面临缺乏14万至19万具备深入分析数据能力人才的情况。
“在数据学科还不成熟的情况下,不应将数据科学作为单个学科来看待。”毛扬勇表示,事实上,数据科学的广泛交叉性,决定了其人才培养的广泛交叉性。在人才培养方面要打破原有的学科限制,数据人才所需要的知识结构是涵盖和横跨不同学科,融合多学科的研究方法,甚至取代并超越它们,是一种新的视角和一种新的学习体验,即超学科。
让“大数据”化为“大智慧”
数字空间是个开放的复杂巨系统。系统之间、层次之间、地域之间、行业之间存在复杂的数据交互和关联关系,加之“人”的因素介入,使这一系统更为复杂。“这需要钱学森的开放复杂巨系统的思想。”中国工程院院士俞梦孙说。
他认为,大数据不是单纯的技术问题,“数字中国”建设过程中,一定要遵循系统科学的思想。
我们看到,互联网与大数据已经成为一类新的战略性人造资源融入到现代农业、先进制造业和服务业的创新发展过程中,极大地促进了我国供给侧结构性改革。
对此,中国中钢股份有限公司副总经理宫敬升深有体会。“泛泛地谈大数据是不行的,一定要把大数据、新的技术与传统的产业结合起来,才能有生命力。”他接受《中国科学报》采访时坦言,“作为传统产业的企业,我们对大数据和智能化是非常渴望的,希望能够依靠大数据来焕发企业的生命力。”
当前的“大数据时代”,还处在解决简单系统的初级阶段。薛惠锋认为,加快建设“数字中国”,必须保持战略清醒,不能人云亦云、亦步亦趋,要敢于颠覆、善于跨越。真正实现物理空间向“数字中国”“信息中国”“智能中国”“智慧中国”的升华,需要具备钱学森的“深、广、久、独”,让“大数据”化为“大智慧”,朝“后数据时代”迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29