京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业应用大数据的三重境界:数据·分析·成果
近几年大数据变得越发重要,已成为企业发展不可缺少的要素,同时直接影响甚至改变着我们的生活。当前,处理数量庞大、增长迅猛、种类繁多的数据成为众多企业面临的挑战。Teradata天睿公司作为全球领先的分析解决方案与咨询服务供应商,基于客户需求,提供领先、全面、有效的解决方案,帮助企业获取商业洞察力,并且将之转化为行动力,创造商业价值。
数据·分析·成果 发现价值到创造价值
在我国乃至全球,很多企业都非常认可数据的价值,持续在做数据积累方面的建设,开发或购买了很多系统,如ERP、CRM等。但这些企业存在一个普遍的问题,那就是拥有如此庞大的数据,却不知如何利用。基于海量数据,利用分析手段获取少量且有效的数据,作用于业务以产生最大价值,是所有企业希望看到的结果。但这个过程真正做起来,不是易事。
Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)表示,简单、量少、信息量相对也少的数据中得出的分析结果是有限的,在具备一定规模且流动的数据环境中得到的分析结果才更有价值。流动数据具有多元化和分析效率两个层面,企业想要得到希望的成果,但挡在前面的是超大规模且多元化数据分析和整合的高门槛。
那么创造价值的过程,就要借力Teradata这样的大数据分析的供应商了。唐青表示,针对多种格式的数据进行分析,会涉及到对数据来源和文本数据的识别。了解用户在使用企业产品和服务过程中的路径情况很重要,如某客户开了卡,有无消费,有无购买其他的分期贷款等。
通过对用户行为的路径追踪,可分析出谁和这个用户有关联,哪些因素会影响其购买行为。企业级应用和消费级用户区别在于,企业级的关系图谱非常复杂,数量级也是指数级增长, 如电信公司的某个分公司就可以梳理几亿条关系图谱。面对这种多种形式的分析,初创公司可能很难驾驭。Teradata的愿景就是帮助企业做分析,让企业清楚地知道客户是谁,谁和这个客户有关联,以及捕获这个客户所有信息、活动信息和活动信息所涉及的渠道。
帮助企业打破数据的桎梏,驱动业务增长
愿景是美好的,但要实行还是要面临业务、人才、架构和部署等方面的挑战。唐青表示,从业务角度来看,我们是否懂得企业的业务场景,具体到哪个业务场景需要改进。从人才资源方面看,如何用合理薪资,招到在操作和执行层面都有很好洞察力的人员。从架构层面看,数据源很多,交互时间变得很快,形式很多,所以对架构设计提出了很高的要求。生态圈的架构师,怎样能够把各种复杂场景的架构设计出来。这里包含来自客户的挑战,如企业架构凌乱且孤立,如何从中寻找统一和协同。在部署过程中,考量性能、流动、成本以及扩展性的同时还要考虑整个体系架构如何在混合云中建设。
唐青表示,Teradata现在正在实施五级转型:
提供业务分析解决方案。助力企业达到可以回答其用户问题的能力,从业务视角、数据模型来寻找客户的业务场景。
业务价值框架。对于咨询公司而言,这是一个重要的、指导性的框架。
专业的数据科学家。这些人才对工具掌握的很好,并且有很强的思维能力,能够把分析带到业务应用中去。
生态圈架构师。这些人会比企业咨询架构师的视角更宽阔、洞察力更有深度。
引入混合云。Teradata大数据平台体系架构,可支持混合云,在云端灵活的做适配。
案例解析 从企业视角解读数据分析的价值
唐青分享了银行的案例,从中我们可以更清晰地看到:数据·分析·成果,企业应用大数据的这三重境界。
过去银行只需通过扩大规模就能提升业绩。现在很多银行开始以客户为中心,以客户需求为导向,优化整个营销体系,打通产品渠道。就像Teradata一样,面向行业同时面向客户,所以在每个客户现场都有合作伙伴或者顾问,都有相配比的生态系统。最终,让所有客户的需求变成商机、变成业务诉求、变成架构实现。传统的银行营销方式,大多是从产品视角来拓展,看把产品卖给哪些客户合适,现在我们从客户视角来看,每个客户都有产生额外产值,增加收入的可能。
唐青表示,Teradata为银行建立客户精细化管理框架,分析每一个客户,把客户进行分类。这样可以做的事情很多,如从中识别哪些是重要客户,哪些是流失客户。在流失客户中识别出谁贡献最大,即使和其中一些失去联系,也可以从做了闭环的网点重新建立联系,挽回流失的客户。
通过银行的客户单一视图系统,客户经理能够及时获得银行用户的基本信息、交易信息及其特征标签,清楚地知道哪些是新客户,哪些客户可能会流失,哪些是睡眠客户。假如银行是上千万级,这样做,哪怕只挽回一个点也是十几万。
试想,如果为每个用户都做画像,清楚的知道整个的生命周期的同时,把其所有的渠道都关联在一起,那么CRM系统就形成了闭环。
这样一来,银行就可以了解客户处于哪个生命周期,有针对性地进行服务。对新用户进行品牌宣传,对衰退期的用户分析流失原因,最重要的是可以做更精准的营销。
写在最后:
未来,银行不仅使用内部数据,可能还会引入一些外部数据对客户进行更精细化的评级。Teradata提供行业领先的大数据解决方案,不仅包括结构化数据的处理及分析方法,还提供非结构化数据的分析手段及方法,更精确地描述客户特征甚至客户的族群标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15