
企业应用大数据的三重境界:数据·分析·成果
近几年大数据变得越发重要,已成为企业发展不可缺少的要素,同时直接影响甚至改变着我们的生活。当前,处理数量庞大、增长迅猛、种类繁多的数据成为众多企业面临的挑战。Teradata天睿公司作为全球领先的分析解决方案与咨询服务供应商,基于客户需求,提供领先、全面、有效的解决方案,帮助企业获取商业洞察力,并且将之转化为行动力,创造商业价值。
数据·分析·成果 发现价值到创造价值
在我国乃至全球,很多企业都非常认可数据的价值,持续在做数据积累方面的建设,开发或购买了很多系统,如ERP、CRM等。但这些企业存在一个普遍的问题,那就是拥有如此庞大的数据,却不知如何利用。基于海量数据,利用分析手段获取少量且有效的数据,作用于业务以产生最大价值,是所有企业希望看到的结果。但这个过程真正做起来,不是易事。
Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)表示,简单、量少、信息量相对也少的数据中得出的分析结果是有限的,在具备一定规模且流动的数据环境中得到的分析结果才更有价值。流动数据具有多元化和分析效率两个层面,企业想要得到希望的成果,但挡在前面的是超大规模且多元化数据分析和整合的高门槛。
那么创造价值的过程,就要借力Teradata这样的大数据分析的供应商了。唐青表示,针对多种格式的数据进行分析,会涉及到对数据来源和文本数据的识别。了解用户在使用企业产品和服务过程中的路径情况很重要,如某客户开了卡,有无消费,有无购买其他的分期贷款等。
通过对用户行为的路径追踪,可分析出谁和这个用户有关联,哪些因素会影响其购买行为。企业级应用和消费级用户区别在于,企业级的关系图谱非常复杂,数量级也是指数级增长, 如电信公司的某个分公司就可以梳理几亿条关系图谱。面对这种多种形式的分析,初创公司可能很难驾驭。Teradata的愿景就是帮助企业做分析,让企业清楚地知道客户是谁,谁和这个客户有关联,以及捕获这个客户所有信息、活动信息和活动信息所涉及的渠道。
帮助企业打破数据的桎梏,驱动业务增长
愿景是美好的,但要实行还是要面临业务、人才、架构和部署等方面的挑战。唐青表示,从业务角度来看,我们是否懂得企业的业务场景,具体到哪个业务场景需要改进。从人才资源方面看,如何用合理薪资,招到在操作和执行层面都有很好洞察力的人员。从架构层面看,数据源很多,交互时间变得很快,形式很多,所以对架构设计提出了很高的要求。生态圈的架构师,怎样能够把各种复杂场景的架构设计出来。这里包含来自客户的挑战,如企业架构凌乱且孤立,如何从中寻找统一和协同。在部署过程中,考量性能、流动、成本以及扩展性的同时还要考虑整个体系架构如何在混合云中建设。
唐青表示,Teradata现在正在实施五级转型:
提供业务分析解决方案。助力企业达到可以回答其用户问题的能力,从业务视角、数据模型来寻找客户的业务场景。
业务价值框架。对于咨询公司而言,这是一个重要的、指导性的框架。
专业的数据科学家。这些人才对工具掌握的很好,并且有很强的思维能力,能够把分析带到业务应用中去。
生态圈架构师。这些人会比企业咨询架构师的视角更宽阔、洞察力更有深度。
引入混合云。Teradata大数据平台体系架构,可支持混合云,在云端灵活的做适配。
案例解析 从企业视角解读数据分析的价值
唐青分享了银行的案例,从中我们可以更清晰地看到:数据·分析·成果,企业应用大数据的这三重境界。
过去银行只需通过扩大规模就能提升业绩。现在很多银行开始以客户为中心,以客户需求为导向,优化整个营销体系,打通产品渠道。就像Teradata一样,面向行业同时面向客户,所以在每个客户现场都有合作伙伴或者顾问,都有相配比的生态系统。最终,让所有客户的需求变成商机、变成业务诉求、变成架构实现。传统的银行营销方式,大多是从产品视角来拓展,看把产品卖给哪些客户合适,现在我们从客户视角来看,每个客户都有产生额外产值,增加收入的可能。
唐青表示,Teradata为银行建立客户精细化管理框架,分析每一个客户,把客户进行分类。这样可以做的事情很多,如从中识别哪些是重要客户,哪些是流失客户。在流失客户中识别出谁贡献最大,即使和其中一些失去联系,也可以从做了闭环的网点重新建立联系,挽回流失的客户。
通过银行的客户单一视图系统,客户经理能够及时获得银行用户的基本信息、交易信息及其特征标签,清楚地知道哪些是新客户,哪些客户可能会流失,哪些是睡眠客户。假如银行是上千万级,这样做,哪怕只挽回一个点也是十几万。
试想,如果为每个用户都做画像,清楚的知道整个的生命周期的同时,把其所有的渠道都关联在一起,那么CRM系统就形成了闭环。
这样一来,银行就可以了解客户处于哪个生命周期,有针对性地进行服务。对新用户进行品牌宣传,对衰退期的用户分析流失原因,最重要的是可以做更精准的营销。
写在最后:
未来,银行不仅使用内部数据,可能还会引入一些外部数据对客户进行更精细化的评级。Teradata提供行业领先的大数据解决方案,不仅包括结构化数据的处理及分析方法,还提供非结构化数据的分析手段及方法,更精确地描述客户特征甚至客户的族群标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15