京公网安备 11010802034615号
经营许可证编号:京B2-20210330
提高大数据项目业务能力的6个技巧
大数据项目所带来的好处通常会惠及更大范围,而不限于项目发起的部门本身。以下是一些技巧,可帮助您的公司最大限度地发挥项目的影响力。
大数据项目侧重于系统和数据集成的技术层面,但如果企业对其拥有的所有系统(包括用户所带来的系统)都有全面的了解,那么企业就会从他们的大数据项目中获得更多的价值。在IT部门了解到将有多少系统可能会从单个大数据项目中受益后,它就可以将大数据业务能力提升,并会开发出更多比最初设想的功能。
以下是一个例子:
您的营销和销售部门跟踪潜在客户,但他们无法确定哪些客户最有可能转变为实际买家。
为了解决这一问题,市场营销部门建立了一个独立的潜在客户评分系统,该系统可以为高质量的潜在客户开发出一个模型。然后,该系统将这个理想的预期模型与整个潜在客户群进行比较,根据潜在客户接近这一模型的程度,对其进行评分和排名。
问题是:要明确这一模型的潜在客户是谁。
同时,数据分析师正在忙于定义一个客户关系管理(CRM)数据库,营销人员将使用该数据库为其推广活动来分析客户群体。客户关系管理系统不是为了帮助筛选潜在客户的,但如果营销部门和IT部门在项目设计之前达成一致的话,该系统就可以实现这一功能。
营销部门可以将这个独立的潜在客户评分系统告诉IT部门,然后两个部门一起来确定是否可能将客户关系管理分析和信息进行整合。在此过程中,以前独立的其他业务流程可以进行合并。
整合工作将如何开展?
通过从销售部门在潜在客户评分系统中所使用的客户管理系统中导出经分析获得的“完美客户”模型。
因为这些业务流程集成了不同的业务功能,而这些业务功能已超出了最初开发客户关系管理数据存储库和分析的工作范围,所以像这样的一些业务流程的能力就得到了扩展。
具有讽刺意味的是,大多数数据分析师(及其经理)都错过了这些机会。
原因之一是他们如此密切地关注于项目的短期目标,而忽视了长期目标。原因之二是IT部门可能将整合工作视为数据和系统的整合,而不是公司内部的业务流程和信息价值链的整合。
以下这些方法可以改进业务流程的整合和扩展工作,以及提升执行大数据项目的能力:
1. 确定您要在大数据项目中完成的目标
一旦您设定了大数据项目的主要目标,您就有了一个基础,可以以此利用一些机会来寻找可能的业务能力。
2. 与其他部门合作,确定一些项目的辅助业务用途
在此步骤中与业务用户进行协作是非常重要的,因为您经常会发现,您的大数据项目可能会给许多孤岛系统和业务流程带来价值,而您可能甚至并不了解这些孤岛系统和业务流程。
3. 在确保有可能获得辅助业务能力之前,请不要规划大数据项目
目标就是使计划、数据库和处理能力足够大,以便可以延伸到您认为项目交付的能力可以达到的其他业务领域。由于设计不够灵活或不够周全,您应避免的是将来必须彻底改造甚至弃用该系统的风险。
4. 为辅助和核心业务功能建立投资回报率目标
如果您和其他用户都认为将辅助业务功能添加到大数据项目中会带来价值,则应在开展更多工作之前,给出这些辅助功能的投资回报率理由和预测,并进行验证。
5. 逐步进行大数据项目的交付
仅仅因为您给更多的业务领域带来了更多的价值,这并不意味着您的大数据项目的期限将会延长。您可以通过对大数据项目进行逐步交付来管理预期。首先交付核心功能,然后逐步交付辅助功能。
6. 与高管和董事会沟通
如果您决定在项目前期进行更多的分析工作以寻求业务能力的一些辅助功能,那么请首先向高管层和董事会解释这一新做法。大多数人会很高兴,因为他们将有可能扩大业务能力,更好地整合业务流程。但是,有些人会认为这会延迟项目交付。在您工作做出改变之前,必须获得管理层的支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11