
提高大数据项目业务能力的6个技巧
大数据项目所带来的好处通常会惠及更大范围,而不限于项目发起的部门本身。以下是一些技巧,可帮助您的公司最大限度地发挥项目的影响力。
大数据项目侧重于系统和数据集成的技术层面,但如果企业对其拥有的所有系统(包括用户所带来的系统)都有全面的了解,那么企业就会从他们的大数据项目中获得更多的价值。在IT部门了解到将有多少系统可能会从单个大数据项目中受益后,它就可以将大数据业务能力提升,并会开发出更多比最初设想的功能。
以下是一个例子:
您的营销和销售部门跟踪潜在客户,但他们无法确定哪些客户最有可能转变为实际买家。
为了解决这一问题,市场营销部门建立了一个独立的潜在客户评分系统,该系统可以为高质量的潜在客户开发出一个模型。然后,该系统将这个理想的预期模型与整个潜在客户群进行比较,根据潜在客户接近这一模型的程度,对其进行评分和排名。
问题是:要明确这一模型的潜在客户是谁。
同时,数据分析师正在忙于定义一个客户关系管理(CRM)数据库,营销人员将使用该数据库为其推广活动来分析客户群体。客户关系管理系统不是为了帮助筛选潜在客户的,但如果营销部门和IT部门在项目设计之前达成一致的话,该系统就可以实现这一功能。
营销部门可以将这个独立的潜在客户评分系统告诉IT部门,然后两个部门一起来确定是否可能将客户关系管理分析和信息进行整合。在此过程中,以前独立的其他业务流程可以进行合并。
整合工作将如何开展?
通过从销售部门在潜在客户评分系统中所使用的客户管理系统中导出经分析获得的“完美客户”模型。
因为这些业务流程集成了不同的业务功能,而这些业务功能已超出了最初开发客户关系管理数据存储库和分析的工作范围,所以像这样的一些业务流程的能力就得到了扩展。
具有讽刺意味的是,大多数数据分析师(及其经理)都错过了这些机会。
原因之一是他们如此密切地关注于项目的短期目标,而忽视了长期目标。原因之二是IT部门可能将整合工作视为数据和系统的整合,而不是公司内部的业务流程和信息价值链的整合。
以下这些方法可以改进业务流程的整合和扩展工作,以及提升执行大数据项目的能力:
1. 确定您要在大数据项目中完成的目标
一旦您设定了大数据项目的主要目标,您就有了一个基础,可以以此利用一些机会来寻找可能的业务能力。
2. 与其他部门合作,确定一些项目的辅助业务用途
在此步骤中与业务用户进行协作是非常重要的,因为您经常会发现,您的大数据项目可能会给许多孤岛系统和业务流程带来价值,而您可能甚至并不了解这些孤岛系统和业务流程。
3. 在确保有可能获得辅助业务能力之前,请不要规划大数据项目
目标就是使计划、数据库和处理能力足够大,以便可以延伸到您认为项目交付的能力可以达到的其他业务领域。由于设计不够灵活或不够周全,您应避免的是将来必须彻底改造甚至弃用该系统的风险。
4. 为辅助和核心业务功能建立投资回报率目标
如果您和其他用户都认为将辅助业务功能添加到大数据项目中会带来价值,则应在开展更多工作之前,给出这些辅助功能的投资回报率理由和预测,并进行验证。
5. 逐步进行大数据项目的交付
仅仅因为您给更多的业务领域带来了更多的价值,这并不意味着您的大数据项目的期限将会延长。您可以通过对大数据项目进行逐步交付来管理预期。首先交付核心功能,然后逐步交付辅助功能。
6. 与高管和董事会沟通
如果您决定在项目前期进行更多的分析工作以寻求业务能力的一些辅助功能,那么请首先向高管层和董事会解释这一新做法。大多数人会很高兴,因为他们将有可能扩大业务能力,更好地整合业务流程。但是,有些人会认为这会延迟项目交付。在您工作做出改变之前,必须获得管理层的支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23