京公网安备 11010802034615号
经营许可证编号:京B2-20210330
提高大数据项目业务能力的6个技巧
大数据项目所带来的好处通常会惠及更大范围,而不限于项目发起的部门本身。以下是一些技巧,可帮助您的公司最大限度地发挥项目的影响力。
大数据项目侧重于系统和数据集成的技术层面,但如果企业对其拥有的所有系统(包括用户所带来的系统)都有全面的了解,那么企业就会从他们的大数据项目中获得更多的价值。在IT部门了解到将有多少系统可能会从单个大数据项目中受益后,它就可以将大数据业务能力提升,并会开发出更多比最初设想的功能。
以下是一个例子:
您的营销和销售部门跟踪潜在客户,但他们无法确定哪些客户最有可能转变为实际买家。
为了解决这一问题,市场营销部门建立了一个独立的潜在客户评分系统,该系统可以为高质量的潜在客户开发出一个模型。然后,该系统将这个理想的预期模型与整个潜在客户群进行比较,根据潜在客户接近这一模型的程度,对其进行评分和排名。
问题是:要明确这一模型的潜在客户是谁。
同时,数据分析师正在忙于定义一个客户关系管理(CRM)数据库,营销人员将使用该数据库为其推广活动来分析客户群体。客户关系管理系统不是为了帮助筛选潜在客户的,但如果营销部门和IT部门在项目设计之前达成一致的话,该系统就可以实现这一功能。
营销部门可以将这个独立的潜在客户评分系统告诉IT部门,然后两个部门一起来确定是否可能将客户关系管理分析和信息进行整合。在此过程中,以前独立的其他业务流程可以进行合并。
整合工作将如何开展?
通过从销售部门在潜在客户评分系统中所使用的客户管理系统中导出经分析获得的“完美客户”模型。
因为这些业务流程集成了不同的业务功能,而这些业务功能已超出了最初开发客户关系管理数据存储库和分析的工作范围,所以像这样的一些业务流程的能力就得到了扩展。
具有讽刺意味的是,大多数数据分析师(及其经理)都错过了这些机会。
原因之一是他们如此密切地关注于项目的短期目标,而忽视了长期目标。原因之二是IT部门可能将整合工作视为数据和系统的整合,而不是公司内部的业务流程和信息价值链的整合。
以下这些方法可以改进业务流程的整合和扩展工作,以及提升执行大数据项目的能力:
1. 确定您要在大数据项目中完成的目标
一旦您设定了大数据项目的主要目标,您就有了一个基础,可以以此利用一些机会来寻找可能的业务能力。
2. 与其他部门合作,确定一些项目的辅助业务用途
在此步骤中与业务用户进行协作是非常重要的,因为您经常会发现,您的大数据项目可能会给许多孤岛系统和业务流程带来价值,而您可能甚至并不了解这些孤岛系统和业务流程。
3. 在确保有可能获得辅助业务能力之前,请不要规划大数据项目
目标就是使计划、数据库和处理能力足够大,以便可以延伸到您认为项目交付的能力可以达到的其他业务领域。由于设计不够灵活或不够周全,您应避免的是将来必须彻底改造甚至弃用该系统的风险。
4. 为辅助和核心业务功能建立投资回报率目标
如果您和其他用户都认为将辅助业务功能添加到大数据项目中会带来价值,则应在开展更多工作之前,给出这些辅助功能的投资回报率理由和预测,并进行验证。
5. 逐步进行大数据项目的交付
仅仅因为您给更多的业务领域带来了更多的价值,这并不意味着您的大数据项目的期限将会延长。您可以通过对大数据项目进行逐步交付来管理预期。首先交付核心功能,然后逐步交付辅助功能。
6. 与高管和董事会沟通
如果您决定在项目前期进行更多的分析工作以寻求业务能力的一些辅助功能,那么请首先向高管层和董事会解释这一新做法。大多数人会很高兴,因为他们将有可能扩大业务能力,更好地整合业务流程。但是,有些人会认为这会延迟项目交付。在您工作做出改变之前,必须获得管理层的支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26