
Python编码类型转换方法详解
本文实例讲述了Python编码类型转换方法。分享给大家供大家参考,具体如下:
1:Python和unicode
为了正确处理多语言文本,Python在2.0版后引入了Unicode字符串。
2:python中的print
虽然python内部需要将文本编码转换为unicode编码来处理,而终端显示工作则由传统的Python字符串完成(实际上,Python的print语句根本无法打印出双字节的Unicode编码字符)。
python的print会对输出的unicode编码(对其它非unicode编码,print会原样输出)做自动的编码转换(输出到控制台时),而文件对象的write方法就不会做,因此,当一些字符串用print输出正常时,write到文件确不一定和print的一样。
在linux下是按照环境变量来转换的,在linux下使用locale命令就可以看到。print语句它的实现是将要输出的内容传送了操作系统,操作系统会根据系统的编码对输入的字节流进行编码。
>>>str='学习python'
>>> str
'\xe5\xad\xa6\xe4\xb9\xa0python' #asII编码
>>> print str
学习python
>>> str=u'学习python'
>>> str ####unicode编码
'\xe5u\xad\xa6\xe4\xb9\xa0python'
3: python中的decode
将其他字符集转化为unicode编码(只有中文字符才需要转换)
>>> str='学习'
>>> ustr=str.decode('utf-8')
>>> ustr
u'\u5b66\u4e60'
这样就对中文字符进行了编码转换,可用python进行后续的处理;(如果不转换的话,python会根据机器的环境变量进行默认的编码转换,这样就可能出现乱码)
4:python中的encode
将unicode转化为其它字符集
>>> str='学习'
>>> ustr=str.decode('utf-8')
>>> ustr
u'\u5b66\u4e60'
>>> ustr.encode('utf-8')
'\xe5\xad\xa6\xe4\xb9\xa0'
>>> print ustr.encode('utf-8')
学习
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18