
数据挖掘概述_数据分析师
最近看了比较多的关于大数据处理方面的知识,但是例如Hadoop,Spark,Storm等平台大都是对于数据的存储和管理操作,并不是对于 数据进行分析和处理的。所以这里就衍生出了另外一种对于数据的处理,数据挖掘。学习数据挖掘也非常偶然,首先毕竟本人一直在做的是数据方面的工作,数据挖 掘相当于是对数据处理后的下一步操作,学习一下数据挖掘的基本知识,了解了解常用的一些数据挖掘算法,对我来说也是一件不错的事。
由于我目前的水准还只是入门水准,就简单的聊聊数据挖掘的基本概念。数据挖掘,英文为:Data Miming,又叫KDD,知识的再次发现,数据挖掘,顾名思义,就是从数据中发掘出对于人们来说,有意义的东西。数据挖掘无处不在,最常见的就是在网上 购物的时候,人家会推荐一些可能让你感兴趣的商品。专业上讲,这叫BI(商业智能)。还有很多例如银行利用数据进行欺诈检测。下面是数据挖掘的一般步骤:
2.数据集成 (数据预处理)
3.数据选择 (数据预处理)
4.数据变换 (数据预处理)
7.知识表示
前四步又是作为数据预处理的操作。数据预处理有很多作用,比如取出噪声数据或者是离群点的处理,还有数据的规格化的操作。也许你会问,我们这么 庞大的数据存在于什么地方呢,像一般的系统,就是存在于关系数据库中,但是这时候就有问题了,数据挖掘对于数据的需求量往往是非常大的,这就需要很多的数 据,所以我们通过一个叫数据仓库的概念,把许多的数据库组织起来,形成一个数据仓库,然后我们对于数据仓库进行OLAP联系分析处理。而数据仓库又是以数 据立方体的形式来表现数据的情况的。
挖掘 数据的 什么
数据挖掘都挖出些什么东西呢,首先一个就是 频繁模式 的挖掘,这个很好理解吧,这里涉及很多的频繁项集的挖掘算法,比如Apriori算法,里面还有很多关联和相关性的要素。还有一个挖掘中经常提到的东西叫 分类 ,分类算法在数据挖掘中也是非常重要的,比较常被人说起的就是贝叶斯分类算法,基于概率统计的算法,随后在分类算法的基础上又出现了聚类分析,就有了后面 的k-means算法,k-中心点算法。对于前面的2大模块的挖掘体系,都有相对应的高级阶段的挖掘分析。对于更加特殊的数据格式和更加复杂的环境又会有 不同的挖掘算法和方式的不同。
数据挖掘的展望
未来一定会是一个数据大爆炸的时代,数据挖掘将会是一个非常热门的领域,他是一个多学科交叉的领域,机器学习,神经网络,统计学,对于各行各业都会起到非常重要的作用。
文章来源:CDA数据分析师官网数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29