
Python实现简单过滤文本段的方法
这篇文章主要介绍了Python实现简单过滤文本段的方法,涉及Python针对文本的读取及字符串遍历、判断、打印等相关操作技巧,需要的朋友可以参考下
一、问题:
如下文本:
## Alignment 0: score=397.0 e_value=8.2e-18 N=9 scaffold1&scaffold106 minus
0- 0: 10026549 10007782 2e-75
0- 1: 10026550 10007781 8e-150
0- 2: 10026552 10007780 1e-116
0- 3: 10026555 10007778 0
0- 4: 10026570 10007768 0
0- 5: 10026579 10007758 4e-15
0- 6: 10026581 10007738 2e-44
0- 7: 10026587 10007734 9e-145
0- 8: 10026591 10007732 2e-147
## Alignment 1: score=2304.0 e_value=1e-164 N=47 scaffold1&scaffold107 minus
1- 0: 10026836 10007942 2e-84
1- 1: 10026839 10007940 0
1- 2: 10026840 10007938 0
1- 3: 10026842 10007937 9e-82
1- 4: 10026843 10007935 7e-79
1- 5: 10026847 10007933 3e-119
1- 6: 10026850 10007932 2e-87
1- 7: 10026854 10007928 5e-22
1- 8: 10026855 10007927 3e-101
1- 9: 10026856 10007925 1e-106
1- 10: 10026857 10007924 0
1- 11: 10026858 10007922 9e-123
1- 12: 10026859 10007921 1e-80
1- 13: 10026860 10007920 8e-104
1- 14: 10026862 10007918 4e-25
1- 15: 10026863 10007917 0
1- 16: 10026864 10007912 4e-40
1- 17: 10026865 10007911 0
1- 18: 10026866 10007910 7e-122
1- 19: 10026867 10007908 2e-25
1- 20: 10026868 10007907 0
1- 21: 10026869 10007905 0
1- 22: 10026870 10007904 3e-150
1- 23: 10026871 10007903 5e-77
1- 24: 10026874 10007901 0
1- 25: 10026875 10007897 0
1- 26: 10026876 10007896 0
1- 27: 10026877 10007894 0
1- 28: 10026880 10007893 3e-52
1- 29: 10026881 10007892 0
1- 30: 10026882 10007891 0
1- 31: 10026883 10007890 0
1- 32: 10026886 10007889 1e-50
1- 33: 10026887 10007888 6e-157
1- 34: 10026888 10007887 0
1- 35: 10026889 10007884 0
1- 36: 10026890 10007883 2e-18
1- 37: 10026891 10007882 9e-64
1- 38: 10026892 10007881 0
1- 39: 10026895 10007880 0
1- 40: 10026898 10007875 0
1- 41: 10026900 10007874 0
1- 42: 10026901 10007873 0
1- 43: 10026902 10007871 2e-123
1- 44: 10026903 10007870 0
1- 45: 10026905 10007869 0
1- 46: 10026909 10007868 1e-81
## Alignment 2: score=811.0 e_value=3.3e-43 N=17 scaffold1&scaffold111 minus
2- 0: 10026595 10007449 6e-40
2- 1: 10026599 10007448 4e-90
2- 2: 10026600 10007447 0
2- 3: 10026601 10007444 9e-55
2- 4: 10026603 10007438 4e-78
2- 5: 10026604 10007434 9e-122
2- 6: 10026606 10007432 2e-162
2- 7: 10026607 10007427 0
2- 8: 10026608 10007426 0
2- 9: 10026612 10007417 0
2- 10: 10026613 10007415 8e-128
2- 11: 10026614 10007414 3e-64
2- 12: 10026615 10007409 0
2- 13: 10026616 10007406 0
2- 14: 10026617 10007403 1e-171
2- 15: 10026618 10007402 0
2- 16: 10026619 10007397 7e-18
........
要求:如果Alignment后面少于20行,把整个的去掉
二、实现方法:
python代码:
#!/usr/bin/python
sum = 0
sumdata = []
FD = open("/root/data.txt","r")
line = FD.readline()
while line:
if line.find("Alignment") == 3:
if sum >= 20:
for i in sumdata:
print i,
sum=0
sumdata=[line]
else:
sum = sum + 1
sumdata.append(line)
line=FD.readline()
if len(line) == 0:
if sum >= 20:
for i in sumdata:
print i,
附:
perl代码
#!/usr/bin/perl
open(FD,"/root/data.txt");
while (){
if ($_ =~ /Alignment/){
if($sum >= 20){
print @sumdata;}
$sum=0;
@sumdata=($_);}
else{
$sum++;
push(@sumdata,$_);}
}
print @sumdata if $sum >=20;
close(FD);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11