京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现的二叉树定义与遍历算法实例
本文实例讲述了python实现的二叉树定义与遍历算法。分享给大家供大家参考,具体如下:
初学python,需要实现一个决策树,首先实践一下利用python实现一个二叉树数据结构。建树的时候做了处理,保证建立的二叉树是平衡二叉树。
# -*- coding: utf-8 -*-
from collections import deque
class Node:
def __init__(self,val,left=None,right=None):
self.val=val
self.left=left
self.right=right
#setter and getter
def get_val(self):
return self.val
def set_val(self,val):
self.val=val
def get_left(self):
return self.left
def set_left(self,left):
self.left=left
def get_right(self):
return self.right
def set_right(self,right):
self.right=right
class Tree:
def __init__(self,list):
list=sorted(list)
self.root=self.build_tree(list)
#递归建立平衡二叉树
def build_tree(self,list):
l=0
r=len(list)-1
if(l>r):
return None
if(l==r):
return Node(list[l])
mid=(l+r)/2
root=Node(list[mid])
root.left=self.build_tree(list[:mid])
root.right=self.build_tree(list[mid+1:])
return root
#前序遍历
def preorder(self,root):
if(root is None):
return
print root.val
self.preorder(root.left)
self.preorder(root.right)
#后序遍历
def postorder(self,root):
if(root is None):
return
self.postorder(root.left)
self.postorder(root.right)
print root.val
#中序遍历
def inorder(self,root):
if(root is None):
return
self.inorder(root.left)
print root.val
self.inorder(root.right)
#层序遍历
def levelorder(self,root):
if root is None:
return
queue =deque([root])
while(len(queue)>0):
size=len(queue)
for i in range(size):
node =queue.popleft()
print node.val
if node.left is not None:
queue.append(node.left)
if node.right is not None:
queue.append(node.right)
list=[1,-1,3,4,5]
tree=Tree(list)
print '中序遍历:'
tree.inorder(tree.root)
print '层序遍历:'
tree.levelorder(tree.root)
print '前序遍历:'
tree.preorder(tree.root)
print '后序遍历:'
tree.postorder(tree.root)
输出:
中序遍历
-1
1
3
4
5
层序遍历
3
-1
4
1
5
前序遍历
3
-1
1
4
5
后序遍历
1
-1
5
4
3
建立的二叉树如下图所示:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22