京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从金融大数据到大数据金融_数据分析师
伴随着阿里集团在美国上市,互联网金融的大戏进入高潮,大数据、云计算以及互联网金融等几年前对公众还很陌生的技术术语,迅速成为社会热点。这些底层技术以移动互联的用户体验呈现出来,不仅通过互联网产品改变了人们的衣食住行,更通过互联网金融产品开始冲击"智力博弈巅峰"的金融业。
不管你恐惧还是欣喜,大数据金融时代已经来临。
如何理解由技术创新逐渐引领的金融创新?何谓大数据金融?我们选取三个最有代表性的例子来解答。
何谓大数据?大数据没有严格定义,顾名思义就是"很多数据"。可以从三个层面来解析这个特别的称谓--
从生产来看,不需要特别的采集过程,因为监管要求、业务逻辑或者技术便利,具有"自生产"特征,比如搜索数据、交易数据等;从存储来看,相对于传统数据库的数据规模,量变引起质变,需要新的数据库技术来支持存储和访问;从使用来看,分析方法从基于概率论的抽样理论过渡到人工智能、统计学习等讲求高维、高效率分析技术。
从行业细分角度,大数据金融业主要有大数据银行金融和大数据证券金融,分别和银行业务、证券业务相关。当然,保险业天然就和大数据相关。
信用卡自动授信是典型的大数据银行金融。从银行角度是否应该对申请者授信、发授多少信用额度,是个重要问题。传统方式是人工审核申请资料,然后根据大致的档位发放额度或拒绝申请。但是当银行积累了足够多的用卡客户数据,可以把是否违约,违约概率,有效使用额度等指标作为被评价对象,然后调用与此相关的各种客户信息建立统计模型,自动计算授信结果。
机器人投资是大数据证券金融的代表形式,股票价格波动受各种因素影响,传统的投资方式一般人工收集信息,手动交易。机器人投资可以建立多因素模型,自动选择股票或寻找交易时机,在适当的风控模型下建立机器人投资云交易模式。
再如,连接银行和证券的大数据不良资产评估。2005年,某国有不良资产管理公司开始尝试在海量数据基础上进行不良资产评估。原本银行信贷资产的评估都是基于会计模型,但是不良资产基本没有会计特征,很难用传统方法评估。因此,收集已处置资产和待处置资产样本进行对比,建立数据挖掘模型,可以方便评估待处置资产的价格。
了解了大数据和大数据金融的几个应用实例,我们总结一下何谓大数据金融。
金融业积累的大数据就是金融大数据,根据银行金融和证券金融本身的不同,这些数据也分成银行金融大数据和证券金融大数据。积累数据过程中,产生了数据采集、存储、使用的相关工作和企业,这样就完成了金融大数据的产业链,但总体依然是信息技术产业链。
随着信息技术全面发展,金融大数据产业具备提供信息技术服务之外的金融服务能力时,就产生了大数据金融。大数据金融是脱颖于金融大数据的新服务,是技术服务催生出来的金融服务。
文章来源:CDA数据分析师培训购物网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08