
SPSS混合模型:线性混合模型
一、线性混合模型(分析-混合模型-线性)
1、概念:“线性混合模型”过程扩展了一般线性模型,因此允许数据表现出相关的和不恒定的变异性。因此,线性混合模型提供了不仅能够就数据的均值还能够就其方差和协方差建模的灵活性。此外,“线性混合模型”过程也是用于拟合可作为混合线性模型构建的其他模型的灵活工具。这些模型包括多变量模型、分层线性模型以及随机系数模型。
2、示例。有一家杂货连锁店想知道各种优惠券对客户消费的影响。通过抽取老客户的随机样本,他们记录了每个客户在过去10周内的消费情况。该公司每周向这些客户邮寄一种不同的优惠券。“线性混合模型”用于估计不同的优惠券对消费的影响,同时调整在10周内重复观察每个主体导致的相关性。
3、方法。最大似然(ML)和受约束的最大似然(REML)估计。
4、统计量。描述统计:各个不同的因子水平组合的因变量和协变量的样本大小、均值和标准差。因子水平信息:每个因子水平及其频率的排序值。此外,还有固定效应的参数估计值和置信区间,协方差矩阵的参数的Wald检验和置信区间。类型I和类型III的平方和可用于评估不同的假设。类型III是缺省值。
5、数据。因变量应是定量的。因子应是分类因子,可以具有数字值或字符串值。协变量和权重变量应是定量的。主体和重复变量可为任意类型。
6、假设。假设因变量与固定因子、随机因子和协变量线性相关。固定效应就因变量的均值建模。随机效应则就因变量的协方差结构建模。多个随机效应之间被认为是彼此独立的,并且会为每个效应计算一个单独的协方差矩阵;不过,针对同一随机效应指定的模型项可能是相关的。重复度量就残差的协方差结构建模。假定因变量也来自正态分布。
7、相关过程。在运行分析之前使用“探索”过程来检查数据。如果不怀疑相关的和不恒定的变异性的存在,则可改为使用“GLM单变量”或“GLM重复测量”过程。如果随机效应具有方差成分协方差结构,并且不存在重复度量,则可改用“方差成分分析”过程。
二、选择主体/重复变量(分析-混合模型-线性)
1、主体。主体是可视为独立于其他主体的观察单元。例如,在医学研究中可以认为某患者的血压读数独立于其他患者的读数。如果存在对每个主体的重复度量,而且您想要对这些观察值之间的相关性建模,定义主体就非常重要。例如,您可能期望同一个患者在连续多次就医时得到的血压读数是相关的。主体也可由多个变量的因子水平组合进行定义;例如,您可以指定性别和年龄类别作为主体变量, 主体列表中指定的所有变量都可用于定义残差协方差结构的主体。可以使用部分或者全部变量定义随机效应协方差结构的主体。
2、重复。在此列表中指定的变量用于标识重复观察值。例如,单个变量周可以标识医学研究中10周内的观察值,而月和天可共同用于标识一年内的每一天的观察值。
3、重复协方差类型。这指定残差的协方差结构。可用的结构如下:◎前因:一阶。◎AR(1)。◎AR(1):异质。◎ARMA(1,1)。◎复合对称。◎复合对称:相关性度规。◎复合对称:异质。◎对角线。◎因子分析:一阶。◎因子分析:一阶、异质。◎Huynh-Feldt。◎已标度的恒等。◎Toeplitz。◎Toeplitz:异质。◎未结构化。◎未结构化:相关
三、估计(分析-混合模型-线性-估计)
1、对数似然性收敛性。如果对数似然函数的绝对变化或相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
2、参数收敛性。如果参数估计值的最大绝对变化或最大相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
3、Hessian收敛性。对于绝对指定,如果基于Hessian的统计量小于指定的值,则假定收敛。对于相对指定,如果统计量小于指定值与对数似然估计的绝对值的乘积,则假定收敛。如果指定的值为0,则不使用该标准。
4、最大得分步长。请求使用Fisher评分算法达到迭代次数n。指定一个正整数。
5、奇异性容许误差。这是在检查奇异性时用作容差的值。指定一个正值。
四、统计量(分析-混响模型-线性-统计量)
1、参数估计。显示固定效应和随机效应参数估计值及其近似标准误。
2、协方差参数检验。显示协方差参数的渐近标准误和Wald检验。
3、参数估值的相关性。显示固定效应参数估计值的渐近相关矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29