京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS混合模型:线性混合模型
一、线性混合模型(分析-混合模型-线性)
1、概念:“线性混合模型”过程扩展了一般线性模型,因此允许数据表现出相关的和不恒定的变异性。因此,线性混合模型提供了不仅能够就数据的均值还能够就其方差和协方差建模的灵活性。此外,“线性混合模型”过程也是用于拟合可作为混合线性模型构建的其他模型的灵活工具。这些模型包括多变量模型、分层线性模型以及随机系数模型。
2、示例。有一家杂货连锁店想知道各种优惠券对客户消费的影响。通过抽取老客户的随机样本,他们记录了每个客户在过去10周内的消费情况。该公司每周向这些客户邮寄一种不同的优惠券。“线性混合模型”用于估计不同的优惠券对消费的影响,同时调整在10周内重复观察每个主体导致的相关性。
3、方法。最大似然(ML)和受约束的最大似然(REML)估计。
4、统计量。描述统计:各个不同的因子水平组合的因变量和协变量的样本大小、均值和标准差。因子水平信息:每个因子水平及其频率的排序值。此外,还有固定效应的参数估计值和置信区间,协方差矩阵的参数的Wald检验和置信区间。类型I和类型III的平方和可用于评估不同的假设。类型III是缺省值。
5、数据。因变量应是定量的。因子应是分类因子,可以具有数字值或字符串值。协变量和权重变量应是定量的。主体和重复变量可为任意类型。
6、假设。假设因变量与固定因子、随机因子和协变量线性相关。固定效应就因变量的均值建模。随机效应则就因变量的协方差结构建模。多个随机效应之间被认为是彼此独立的,并且会为每个效应计算一个单独的协方差矩阵;不过,针对同一随机效应指定的模型项可能是相关的。重复度量就残差的协方差结构建模。假定因变量也来自正态分布。
7、相关过程。在运行分析之前使用“探索”过程来检查数据。如果不怀疑相关的和不恒定的变异性的存在,则可改为使用“GLM单变量”或“GLM重复测量”过程。如果随机效应具有方差成分协方差结构,并且不存在重复度量,则可改用“方差成分分析”过程。
二、选择主体/重复变量(分析-混合模型-线性)
1、主体。主体是可视为独立于其他主体的观察单元。例如,在医学研究中可以认为某患者的血压读数独立于其他患者的读数。如果存在对每个主体的重复度量,而且您想要对这些观察值之间的相关性建模,定义主体就非常重要。例如,您可能期望同一个患者在连续多次就医时得到的血压读数是相关的。主体也可由多个变量的因子水平组合进行定义;例如,您可以指定性别和年龄类别作为主体变量, 主体列表中指定的所有变量都可用于定义残差协方差结构的主体。可以使用部分或者全部变量定义随机效应协方差结构的主体。
2、重复。在此列表中指定的变量用于标识重复观察值。例如,单个变量周可以标识医学研究中10周内的观察值,而月和天可共同用于标识一年内的每一天的观察值。
3、重复协方差类型。这指定残差的协方差结构。可用的结构如下:◎前因:一阶。◎AR(1)。◎AR(1):异质。◎ARMA(1,1)。◎复合对称。◎复合对称:相关性度规。◎复合对称:异质。◎对角线。◎因子分析:一阶。◎因子分析:一阶、异质。◎Huynh-Feldt。◎已标度的恒等。◎Toeplitz。◎Toeplitz:异质。◎未结构化。◎未结构化:相关
三、估计(分析-混合模型-线性-估计)
1、对数似然性收敛性。如果对数似然函数的绝对变化或相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
2、参数收敛性。如果参数估计值的最大绝对变化或最大相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
3、Hessian收敛性。对于绝对指定,如果基于Hessian的统计量小于指定的值,则假定收敛。对于相对指定,如果统计量小于指定值与对数似然估计的绝对值的乘积,则假定收敛。如果指定的值为0,则不使用该标准。
4、最大得分步长。请求使用Fisher评分算法达到迭代次数n。指定一个正整数。
5、奇异性容许误差。这是在检查奇异性时用作容差的值。指定一个正值。
四、统计量(分析-混响模型-线性-统计量)
1、参数估计。显示固定效应和随机效应参数估计值及其近似标准误。
2、协方差参数检验。显示协方差参数的渐近标准误和Wald检验。
3、参数估值的相关性。显示固定效应参数估计值的渐近相关矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22