京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS最优尺度:分类回归
一、分类回归(分析-回归-最佳尺度)
1、概念:分类回归通过为类别指定数值来量化分类数据,从而生成转换后变量的最优线性回归方程。分类回归也用缩写词CATREG来表示(代表categorical regression)。标准线性回归分析涉及使响应变量(因变量)和预测变量(自变量)的加权组合之间的平方差之和达到最小。变量通常是定量的,(名义)分类数据重新编码为二元变量或对比变量。因此,分类变量用于分离个案组,并且该技术估计每个组的独立的参数集。估计的系数反映了预测变量的变化对响应的影响程度。对于预测变量值的任何组合都可以预测响应。
另一种方法需要对分类预测变量值本身进行响应回归。这样,将为每个变量分别估计一个系数。但是,对于分类变量,类别值是任意的。以不同的方式编码类别将产生不同的系数,这样,在对同样的几个变量的分析进行比较时,难度就增大了。CATREG通过同时调整名义、序数和数值变量扩展了标准方法。该过程量化分类变量以使量化反映初始类别的特征。该过程以与处理数值变量相同的方式处理量化的分类变量。使用非线性转换允许在各种级别分析变量以查找最佳拟合模型。
2、示例。分类回归可用于描述工作满意度对工作类别、地理区域和旅行量的依赖程度。您可能会发现高满意度对应于经理和低旅行量。生成的回归方程可用于针对三个自变量的任何组合预测工作满意度。
3、统计量和图。频率、回归系数、ANOVA表、迭代历史记录、类别量化、未转换的预测变量之间的相关性、转换后的预测变量之间的相关性、残差图和变换图。
4、数据。CATREG在类别指示变量上运行。类别指示符应为正整数。可使用“离散化”对话框将小数值变量和字符串变量转换为正整数。
5、假设。只允许一个响应变量,但是预测变量的最大数目为200。该数据必须至少包含三个有效个案,并且有效个案数必须大于预测变量数加一。
6、相关过程。CATREG等效于使用最优尺度的分类典型相关性分析(OVERALS),该分析有两个变量集,其中一个只包含一个变量。将所有变量调整为数值级别对应于标准多重回归分析。
二、规则化(分析-回归-最佳尺度-规则化)
1、方法。规则化方法可以向0方向缩小回归系数估计,以降低其变异性,从而改善模型的预测误差。
1.1、Ridge回归。Ridge回归引入惩罚项以缩小系数,惩罚项等于系数平方乘以惩罚系数的总和。该系数可从0(无惩罚)到1变化;如果指定了范围与增量,过程将搜索“最佳”的惩罚值。
1.2、套索。套索的惩罚项是基于绝对系数的总和,惩罚系数的指定与Ridge回归类似,但套索涉及更密集的计算。
1.3、弹性网络。“弹性网络”简单地组合套索和Ridge回归惩罚,在指定的值网格中搜索以发现“最佳”的套索和Ridge回归惩罚系数。对于给定的套索与Ridge回归惩罚,“弹性网络”的计算量并不比套索多很多。
2、显示规则化图。这些是回归系数与规则化惩罚图。在搜索某个值范围以寻找“最佳”惩罚系数时,它提供了有关回归系数在该范围上如何变化的视图。
3、弹性网络图。对于“弹性网络”方法,由Ridge回归惩罚值产生单独的规则化图。所有可能图使用指定的最小和最大Ridge回归惩罚值所确定范围中的每个值。为部分Ridge惩罚允许您指定由最小和最大Ridge回归惩罚值所确定范围的值子集。只需键入惩罚值的编号(或指定值范围),然后单击添加。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01