
【每周一本书第十波】淘宝、天猫电商数据分析与挖掘实战(第2版)
数据有毒,我也会被数据误导,因为平台提供的数据可能并不精准,甚至误差极大。我在操作单品时发现过生意参谋里面统计的关键词数据有错误,例如我通过实时访客掌握了成交词为 A 词,并确认无误,但第二天的单品统计数据告诉我昨天的成交词是 B 词,如果我没有掌握真实的信息,那么我就会着重去优化 B 词,甚至在后面干脆就把 A 词删掉了,因为数据告诉我A词没有任何效果。
数据原本的作用是帮助我们做决策,一旦数据产生错误,就可能导致我们做出错误的决策。但没有数据,我们又只能是一个瞎子,毫无方向感。
所以,使用数据要慎重、胆大、心细,同时也要看我们利用数据来做什么。对商家而言,数据有两种用途:第一种,用来做预测,通过参考数据从而决定卖什么货;第二种,用来指导下一步的运营操作。对于第一种用途,数据仅作为参考,因为我们对市场的判断,除数据外,还有自己的行业经验。对于第二种用途,则建议多验证数据,例如当我看到 B 词有数据时,通过搜索B词发现我的商品排名很靠后,用脚趾想都知道排名这么靠后买家怎么可能会找到我的商品并下单呢?
上文摘自本周C君给大家提供的赠书,零一的《淘宝、天猫电商数据分析与挖掘实战(第2版)》
本书第1版获得了很多读者的认可,甚至有不少高校将其改编成了教程,但本书依旧有许多不足之处,比如对于运营模块内容较少而且不够深入,特别是数据挖掘套件的安装和部署难倒了许多读者。
本书第2版为了跟上时代的变化和解决软件部署烦琐的问题,首先将线下的数据平台改成新平台,或是用其他平台替代;其次是对于软件方面的升级,将 SQL Server 的挖掘套件换成了SmartMining 个人版,部分章节使用了 Excel 2016 版本,用 Power Pivot 实现数据建模,用PowerQuery 提升数据清洗的能力。
【每周一本书】又是一周,CDA数据分析师携手工业出版社将于每周三展开赠书活动,每周给各位读者提供3-5本赠书,希望带动各位读者能借此机会每周充一次电。(注:书籍将于10天内发放到中奖者手中。参与方式见下文)
作者简介
零一
沐垚科技创始人,电商自媒体,资深数据分析师,8年电商从业经验,擅长Excel、Power BI、R、Python等工具,主要研究数据化运营、商业智能和人工智能在电商领域的应用,专注“数据+电商”的新零售服务。
内容提要
本书主要针对电商从业者(运营和店长)和数据分析入门者,以电商业务实战为主线,介绍数据分析相关的知识。本书的上半部分主要介绍淘宝的操作方法,以及探讨未来的电商布局之路。本书的下半部分以实战为主,主要介绍淘宝卖家如何应用 Excel 和数据来做决策。数据从来都离不开业务层,数据分析师必不可少的 4 个要素是思维、业务、工具和数据,而前两者才是最重要的。
上周获奖名单
参与方式
文末留言告诉C君,这本书吸引您的理由,获得精选,点(ren)赞(qi)数(gao)的前5名即可获得本书
本期活动截止时间11月6日中午12点
(为确保赠书活动的公平公开性,让更多人能参与到每周一本书中。赠书活动参与者每月有且仅有一次获奖机会,有获奖记录的参与者赠书将自动转赠其他参与者)
土豪请扫描下方二维码订购
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15