
11月20日,沪指还在2440点徘徊,而10个交易日之后,指数已经逼近3000点,涨幅超过了20%,这10天沪指日均成交量超过了5000亿元,创造了历史天量。期间券商、保险、地产、银行等大权重股纷纷飙涨,板块涨幅超过了30%,大象起舞,政策重磅利好频繁(沪港通、降息等),资金流动性泛滥,这真的是牛市来了吗?那么来看这一组指标吧。
熊市要素被一一化解
从2009年8月开始,A股重新进入熊市,其实主要原因是以下几点,首先是资金面收紧,通胀预期明确;其次是地方债商业银行坏账高企,管理层的货币政策无法转向;还有房地产泡沫破裂,周期性如有色金属、煤炭、钢铁等行业普遍进入业绩低谷;影子银行风险,资金在虚拟经济空转,钱荒效应危机四伏;最后是新股、再融资量巨大,市场入不敷出,成交低迷。如今来看,笔者认为管理层逐步找到问题的突破口,其中最明显的就是新股要素,通过新股改革,乃至未来可能的注册制,已经通过市场赚钱效应和新财富神话进行了化解。还有央行,开始向美国、欧洲和日本学习,放水提供无尽的流动性,把所有风险先盖住,通过强大的资源控制力,把风险释放到外围,比如民营企业和民间借贷等,保证实体经济的稳定。如今行情的走强,完全是依托资金流动性的突然释放,银行理财等无风险利率下降,将资金赶入股市带来的机会。
数据显示,中国11月汇丰制造业PMI初值由前值50.4回落至50,创半年新低。其中,产出分项指数由上月的50.7大幅回落至49.5,重回收缩领域,创下7个月新低。综合近期数据,显示四季度经济增长依旧不容乐观,1~10月份,全国规模以上工业企业实现利润总额49446.8亿元,同比增长6.7%,增速比1~9月份回落1.2个百分点,创21个月新低,其中煤炭开采和洗选业利润总额同比大降45.2%。“稳增长”压力不断增大,宽松预期持续发酵。笔者认为经济走弱逼迫管理层必须要推行宽松货币政策,随着中国经济通货紧缩状况进一步确立,货币宽松如影随形,流动性泛滥形成股市上涨的强大动力,更由于经济下行趋势进一步确立,而金融市场又一直出现融资成本过高,影响实体企业盈利的情况,未来央行货币必然宽松,信贷将会形成猛烈的供给。但基本面走弱也成为市场最大的硬伤,而牛市行情中,业绩增长乃至超预期增长是主要的动力,仅凭宽松政策难以引发持久的牛市。本波降息类似于2012年,同时从走势来看,也有1949点时大肆启动权重股类似,那么股民可以借鉴相关走势。
政策利好成色良好
由于市场资金流动性充裕,那么具有低估值、低股价与高股息率的蓝筹品种,往往最受场外资金大举追捧,这样指数就会被大权重股推动而持续拉升。笔者认为如今反弹的核心就是政策受益,沪港通、降息乃至未来的注册制、T+0等,都为已经沉寂近5年的蓝筹股提供了机会,随着超跌反弹、政策推动,资金持续流入,行情也就由此而起了。历史上A股的牛市都是政策诱发的,比如说2006~2007年的股改、汇改;2008年四季度的4万亿元救市刺激计划等。今年是全面深化改革元年,对于全面深化改革的部署,2014~2015年是全面启动阶段,2016~2018年是攻坚阶段,2019~2020是收尾阶段。2013年底市场认为2014年各项改革会全面启动,但实际情况(特别是上半年)显著弱于预期。其中原因在于,虽然三中全会制定了全面深化改革的顶层设计方案,但各个领域的改革方案并没制定,需要在2014年制定。因此,2014年本质上是改革方案设计年,2015年是各项改革启动年。从12月份开始,各项改革政策可能会纷至沓来。比如京津冀协同发展规划、“一带一路”长期规划、土地制度改革等。
从近期新入资金行为角度看,2500点下方是券商、游资、私募、大户等持续加杠杆的资金推动,2500点以上才是社保、保险、银行、企业资金全力入市的阶段,这些长线资金建仓体现在盘面上基本就是扫货,照单全收。以金融股为代表的蓝筹股也在资金推动下形成了近乎疯狂的走势。对于目前的股指运行态势,调整就买入,当这种共识越来越强烈的时候,指数反而就跌不下去,而是一路上涨,现在就是这种情况。对于一些确定性的机会,大家都等着好的价格去买,在钱很充裕的情况下,等到好价格是很困难的事情。本文:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11