京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS数据准备:标识异常个案
一、标识异常个案(数据-标识异常个案)
“异常检测”过程查找基于聚类组标准值偏差的异常个案。该过程设计为在探索性数据分析步骤中,快速检测到用于数据审核的异常个案,并优先于任何推论性数据分析。此算法设计为一般“异常检测”;即异常个案的定义不被指定为任何特定应用程序,例如对保健行业中异常付款模式的检测或对金融业中洗钱行为的检测,其中对异常的定义可以被很好地界定。
示例。雇用的构建中风治疗效果预测模型的数据分析人员对数据质量非常关注,因为这类模型对异常观察值十分敏感。某些偏离的观察值表示真正唯一的个案,因此不适合用于预测,而其他观察值是由数据输入错误导致的,其值从技术上说是“正确”的,因此不能被数据验证过程捕获。“标识异常个案”过程找出并报告这些离群值,以便分析人员能够确定如何处理这些值。
统计量。该过程生成对等组、连续和分类变量的对等组标准值、基于对等组标准值偏差的异常指标,以及对被视为异常的个案影响最大的变量影响值。
数据。此过程既处理连续变量也处理分类变量。每行表示一个不同观察值,每列表示一个对等组以其为基础的不同变量。个案标识变量可在用于标记输出的数据文件中获得,但不能用于分析中。允许缺失值。被指定的权重变量可以忽略。检测模型可用于新检验数据文件。检验数据元素必须与培训数据元素一致。并且,根据算法设置,用于创建模型的缺失值处理方法可适用于优先于评分的检验数据文件。
个案顺序。注意,解决方案可取决于个案顺序。要使顺序的影响降至最低程度,可随机排列个案的顺序。想要验证给定解的稳定性,您可能想要通过以不同随机顺序排序的案例来得到多个不同的解。在文件非常大的情况,可使用以不同随机顺序排序的个案样本运行多次。
假设。算法假设所有变量都为不恒定且独立的,并且没有个案具有含有任何输入变量的缺失值。假设每个连续变量具有正态(高斯)分布,假设每个分类变量具有多项分布。经验内部检验表明,该过程对于违反独立性假设和分布假设均相当稳健,但应了解这些假设符合的程度。
二、输出(数据-标识异常个案-输出)
1、对等组标准值。此选项显示连续变量标准值表(如果分析中使用了任何连续变量)以及分类变量标准值表(如果分析中使用了任何分类变量)。连续变量标准值表显示每个对等组的每个连续变量的均值和标准差。分类变量标准值表显示每个对等组的每个分类变量的众数(最大类别)、频率和频率百分比。连续变量的均值和分类变量的众数在分析中用作标准值。
2、异常指标。异常指标摘要显示标识为最不正常个案的异常指标的描述统计。
3、按分析变量列出出现的原因。对于每个原因,该表将每个变量的出现频率和频率百分比显示为原因。该表还报告每个变量的影响的描述统计。如果在“选项”选项卡上将最大的原因数量设置为0,则此选项不可用。
4、已处理的个案数。个案处理摘要显示活动数据集中所有个案的计数和计数百分比、分析中包含和排除的个案,以及每个对等组中的个案。
三、保存(数据-标识异常个案-保存)
1、异常指标。将每个个案的异常指标值保存到具有指定名称的变量中。
2、对等组。将对等组ID、个案计数以及每个个案的以百分比表示的大小保存到具有指定根名称的变量中。例如,如果指定了根名称Peer,则会生成变量Peerid、PeerSize和PeerPctSize。Peerid为个案的对等组ID,PeerSize为组的大小,而PeerPctSize为用百分比表示的组大小。
3、原因。使用指定的根名称保存原因变量集。原因变量集包含作为原因的变量的名称、变量影响度量、变量自身的值以及标准值。变量集的数量取决于在“选项”选项卡上请求的原因的数目。例如,如果指定根名称Reason,则会生成变量ReasonVar_k、ReasonMeasure_k、ReasonValue_k和ReasonNorm_k,其中k是第k个原因。如果原因数量设置为0,则此选项不可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16