
CDA推荐|全国人口基础信息空间可视化(内附活动预告)
今天的主角名叫“全国新型城镇化监控与评估平台”,名字很长,解释起来就是极海做了这么一件事儿,帮助中国城市规划设计研究院(下面简称“中规院”)的小伙伴把城乡发展建设相关数据进行专业、直观、美观的可视化,并加上了一些图表分析,全面并细致地描述了全国城乡发展的现状。
这个平台上数据很多,空间上涵盖了全国大小市县,年代上跨越了好几代伟大的领导人;数据覆盖面很广,经济、社会、环境、建设、民生,只有你想不到,没有中规院和极海找不到。本文仅仅是从其中的人口数据出发,讲一讲可视化平台能告诉我们什么。
知道你已经准备打开度娘亲自感受一下这个平台了,但是考虑到数据共享权限,目前这还不是一个对民众开放的系统:( 。别难过,如果想要数据,可以找中规院,如果需要可视化分析,可以找极海,如果想先一饱眼福,别无选择,快看下文!
「中国人在哪里」
根据国家统计局资料显示,在2015年末,中国总人口已经达到了13.7462亿人。这些人口当然没有平均分布在九百六十万平方公里的中国大地上,总体来讲,中国14亿人口分布东部多于西部,城市多于农村,且这样的分化趋势愈加严重。
口说无凭,平台基于当前大陆地区人类活动POI点的分布进行了可视化,暗黑色底图上越明亮的点代表人类活动越为频繁。
从图上可以清晰地看出东南西北各有四个最为闪亮的人类活动聚集点,这里的人口最为密集,是中国最发达的城市,具有最强大的吸引力使得更多二三线城市的人口向这里迁移。同时,大片几乎为黑色的面积代表这些地方相对人口更为稀少,人类活动较为匮乏。
「中国人去了哪里」
平台上有这么几张图,自上而下分别是全国省级、地级市级、区县级的五六普人口密度变化(数据来源:国家统计局年鉴数据):
虽然总人口的涨势全国的马一起都拉不回头,但是依然可以看到重庆、湖北、四川、贵州四省人口密度有所下降。与此同时,北上广的人口密度增长在全国遥遥领先,雄踞全国的北东南三方。
以江苏为例,即使全省人口密度从五普到六普上升了54.4人/平方公里,但细数江苏十三大市的人口变化,苏南苏北情况截然不同。苏南各市比起苏北有显著的政治经济优势,与浙东北和上海共同构成了长三角最为发达的经济圈,这里吸引着源源不断的人来工作生活,人口密度的增长在全国遥遥领先。
当人口密度变化细分到区县尺度上,你可能已经连自己家在哪个小色块里都不知道了,但是你一定可以清楚地认出北上广深。以这些一线城市为中心的周边区域人口密度增长在图上呈现出极为醒目的红色(部分区县年鉴数据并不准确,在图上也呈红色),是京津冀、长三角、珠三角经济区最核心的地带。
「中国人口流动」
再来看一张描述上一周10月9日至10月15日期间全国人口迁移的地图(数据来源:腾讯)
图上每一条线代表了两个城市之间的迁移人数,人数越多,线条越粗,颜色越红。
你是否发现,中东部的联系情况,构成了一个菱形的钻石结构,同时,珠三角,长三角、成渝、京津冀城镇群内部之间的联系也较密切。而西部城市之间的联系成走廊效应?
放大来看,北京、上海、广州/深圳、成都作为四个顶点连接起了这个菱形,而这几个城市恰好是上文人口密度变化的几个热点城市。
详细来看这几个城市人口的主要流动方向,红色表示相对更多的流动人数,蓝色反之:
近一个周,迁入北京的人,廊坊、保定、天津、武汉、成都、上海等较多。
这几个城市两两之间在短短一周内的流动人口数量即可达到百万的数量级,且以周边城市居多,同时,从几大城市的流入流出来看,基本也是“礼尚往来”的状态,相互联系比较紧密。它们作为中国东南西北四方的交通枢纽或见证了越来越多的外来人口进城落脚,或见证了无数本地人向着更大的机遇远行。
城市容纳着中国多半数的人口,未来这里还会成为更多人的家。全国新型城镇化监控与评估平台不仅能够直观地展示城市方方面面的情况,并能对城市现状进行体检评估。
随着平台的进一步建设,我们越来越坚信,随着中国新科技的“井喷”,中国城市化与中国新兴信息技术的结合将会更好的推动新型城镇化,同时,新型城镇化将会正视城市病,创新性地解决交通拥堵、污染、生态灾害、城市贫困、空城鬼城、职住不平衡、城乡失衡等,推动以人为核心的新型城镇化,促进城市持续健康发展。
6月份的WGDC之后,我们对地理大数据对城市建设和发展有了更进一步的思考,10月27日下午14点我们将联合中国城市规划设计研究院共同召开“智慧数据云平台与新型城镇化智库论坛”,在次,我们诚邀您的莅临,共同探讨城市发展的创新思路。
点击阅读原文,了解活动详情及报名参会。27号北京!我们等你!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08