
SPSS神经网络心得(一)
SPSS神经网络,是一个非线性的数据建模工具集合,包括输入层和输出层、一个或者多个隐藏层。神经元之间的连接赋予相关的权重,训练算法在迭代过程中不断调整这些权重,从而使得预测误差最小化并给出预测精度。包括多层感知器(MLP)和径向基函数(RBF)两种方法。本人只研究了多层感知器的方法。
使用SPSS神经网络,可以将数据拆分成训练集、测试集、验证集。训练集用来估计网络参数;测试集用来防止过度训练。验证样本用来单独评估最终网络。
多层感知器(MLP)
MLP通过多层感知器来拟合神经网络。多层感知器是一个前馈式有监督的结构。它可以包含多个隐藏层、一个或者多个因变量。
变量
因变量:在函数关系式中,某特定的数会随一个(或几个)变动的数的变动而变动。
协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果。协变量可以进行重标度:标准化(A)、标准化、调整标准化。
• 标准化(A)。 减去均值并除以标准差,(x−均值)/s。
• 标准化。 减去均值并除以范围,(x−min)/(max−min)。标准化值介于 0 和 1 之间。
• 调整标准化。 减去最小值并除以范围所得到的调整版本,[2*(x−min)/(max−min)]−1。调整的标准化值介于 −1 和 1 之间。
分区
分区数据集。 此组指定将活动数据集划分为训练集、测试集或验证集的方法。训练集包含用于训练神经网络的数据记录;数据集中的某些个案百分比必须分配给训练样本以获得一个模型。测试集是一个用于跟踪训练过程中的错误以防止超额训练的独立数据记录集。强烈建议您创建一个训练集,并且如果测试集小于训练集,网络训练通常最高效。验证集是另一个用于评估最终神经网络的独立数据记录集。
• 根据个案的相对数量随机分配个案。 指定随机分配到每个样本(训练、测试和验证)的个案的相对数量(比率)。% 列根据您已经指定的相对数量,报告将被分配到每个样本的个案的百分比。
例如,指定 7、3、0 作为训练、检验和坚持样本的相对数量对应于 70%、30% 和 0%。指定 2、1、1 作为相对数量对应 50%、25% 和 25%;1、1、1 对应将数据集在训练、检验和坚持中分为相等的三部分。
• 使用分区变量分配个案。 指定一个将活动数据集中的每个个案分配到训练、检验和坚持样本中的数值变量。变量为正值的个案被分配到训练集中,值为 0 的个案被分配到测试集中,而负值个案被分配到验证集中。具有系统缺失值的个案会从分析中排除。分区变量的任何用户缺失值始终视为有效。
体系结构
“体系结构”选项卡用于指定网络结构。该过程可以自动选择“最佳”体系结构,或者也可以指定自定义体系结构。
隐藏层
隐藏层包含无法观察的网络节点(单位)。每个隐藏单位是一个输入权重总和的函数。该函数是激活函数,而且权重值由估计算法确定。如果网络包含第二个隐藏层,第二个层中的每个隐藏单位是第一个隐藏层中权重之和的函数。两个层使用相同激活函数。
隐藏层数. 一个多层感知器可以有一个或两个隐藏层。
激活函数. 激活函数将某个层中的单位的加权和“关联”到下一层的单位值。
• 双曲正切。 此函数格式:γ(c) = 此函数格式:γ(c) =>
• Sigmoid。 此函数格式:γ(c) = 1/(1+e^(−c))。其取实数值参数并将其变换到(0、1)范围。
单位数. 可以明确指定或由估计算法自动确定每个隐藏层中的单元数。
输出层
输出层包含目标(因)变量。
激活函数.激活函数将某个层中的单位的加权和“关联”到下一层的单位值。
• 恒等。 此函数格式:γ(c) = c。其取实数值参数并且其返回值保持不变。使用自动体系结构选择时,如果存在刻度因变量,则此为输出层中所有单位的激活函数。
• Softmax。 其取实数值参数的矢量,并将其变换到元素介于(0、1)范围的矢量,和为 1。只有所有因变量是分类变量时,才可以使用 Softmax。使用自动体系结构选择时,如果所有因变量是分类变量,此为输出层中所有单位的激活函数。
• 双曲正切
• Sigmoid
尺度因变量重标度。 至少选择一个刻度因变量时才可以使用这些控制。
如果输出层使用 sigmoid 激活函数,则此为刻度因变量所需的重标度方法。修正值选项指定一个较小数字 ε,并将其作为修正值应用于重标度公式中;此修正值确保所有重标度因变量值介于激活函数范围。具体来说,当 x 取最小值和最大值时,未修正的公式中的值 0 和 1 将定义 sigmoid 函数的范围限制,但是不介于该范围之内。修正公式为 [x−(min−ε)]/[(max+ε)−(min−ε)]。请指定大于等于 0 的数。
如果输出层使用双曲正切激活函数,则此为刻度因变量所需的重标度方法。修正值选项指定一个较小数字 ε,并将其作为修正值应用于重标度公式中;此修正值确保所有重标度因变量值介于激活函数范围。具体来说,当 x 取最小值和最大值时,未修正的公式中的值− 1 和 1 将定义双曲正切函数的范围限制,但是不介于该范围之内。修正公式为 {2*[(x−(min−ε))/((max+ε)−(min−ε))]}−1。指定一个大于或等于 0 的数字。
培训
“培训”选项卡用于指定如何培训网络。培训的类型和优化算法确定哪个培训选项可用。
培训类型。 培训类型确定网络如何处理记录。从下列培训类型中选择:
• 批处理。 只有传递所有培训数据记录之后才能更新键结值;也就是说,批处理培训使用培训数据集中所有记录信息。批处理培训通常为首选方法,因为它直接使总误差最小;然而,批处理培训可能需要多次更新权重,直至满足其中一条中止规则,因此可能需要传递数据多次。其对于“较小”数据集最有用。
•
在线。 在每一个培训数据记录之后更新键结值;也就是说,在线培训一次使用一个记录信息。在线培训连续获取记录并更新权重,直至满足其中一条中止规则。如果一次使用所有记录,而且不满足任何中止规则,那么该过程通过循环数据记录继续。对于与预测变量相关的“较大”数据集,在线培训要优于批处理;也就是说,如果有许多记录和输入,并且其值之间不相互独立,那么在线培训可以比批处理培训更快获取一个合理答案。
•
袖珍型批处理。 将培训数据记录划分到大小近似相等的组中,然后在传递一组之后更新键结值;也就是说,袖珍型批处理培训使用一组记录信息。然后,如果需要,该过程循环数据组。袖珍型批处理培训提供介于批处理培训和在线培训之间的折中方法,它可能最适于“中型”数据集。该过程可以自动确定每个袖珍型批处理培训记录的数目,或者您可以指定一个大于
1 并小于或等于将存储到内存的个案的最大数目的整数。您可以在选项选项卡上设置将存储到内存的个案最大数目。
优化算法。 这是一种用于估计键结值的方法。
• 调整的共轭梯度。 使用共轭梯度方法对齐的假设仅应用于批处理培训类型,所以此方法不适用于在线培训或袖珍型批处理培训。
• 梯度下降。 此方法需与在线培训或袖珍型批处理培训共同使用;也可以与批处理培训共同使用。
培训选项。 该培训选项允许您细微调整优化算法。您一般无需更改这些设置,除非网络出现估计问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18