京公网安备 11010802034615号
经营许可证编号:京B2-20210330
行业应用成效显著 大数据未来可期
在智能交通领域,大数据分析在各地交通管理部门中得以实施。从当前的数据分析应用看,主要聚焦在交通流量分析和车辆线索发现两方面。交通流量分析可为交通诱导、道路拥塞分析提供辅助性数据,弥补采样GPS信息进行交通流量分析的不足。在车辆线索发现方面,目前在套牌车辆分析以及车辆跟随分析方面成效显著。
大数据优势明显
毫无疑问,安防领域的用户越来越重视数据的价值,期望大数据技术能帮助其创新业务应用,特别是政府部门和企业商铺。政府部门通过十几年的信息化建设,特别是最近几年治安监控、道路卡口的成体系建设,采集了大量的数据资源,这些数据资源目前正亟待挖掘分析,以便提高社会治安管理成效,打击有组织犯罪,改善城市交通等。在企业商铺方面,则重点关注客流分析、热点商品等,用于进一步提高经营效率。
实践证明,这些技术的应用将颠覆已有靠人力脑力分析的管理经营模式,将业务管理和商业利润以数据化进行运行。因为传统的商务智能可以解决部分用户的数据挖掘需求,但当数据大规模增长时,传统的技术显得力不从心。利用累积的大数据资源,以及快速发展的大数据技术,可以深度挖掘安防领域的视频数据,在时间跨度和空间广度范围分析用户行为模式,为用户的经营或管理决策提供数据支撑。
民用领域商机更大
安防大数据有两个领域:一个是行业,一个是民用。行业领域的业务目标主要是协助业主创造价值,以及提高业主数据资产的附加值,因此充分开展视频分析,促进视频数据与行业业务数据的融合分析,创新行业应用新模式,是最为可行的商业模式。民用领域则跟当前的互联网商业模式比较接近,通过扩大用户规模,提供数据服务,深入挖掘用户消费习惯模式和潜在需求趋向,优化资源配置,是主要的商业模式。从这两个领域来看,民用领域的商业机会可能更多一点,因为通过公共的数据平台,能够吸引大量第三方的服务商一起提供多样化的服务,满足公众领域各式各样的客户需求。
但目前来看,真正实现大数据价值的还是在行业领域。从整体的格局来看,自从大数据技术在安防行业落地后,正对安防的产业格局产生积极的影响。安防建设从早期的模拟到数字,再到高清,产业发展的方向正因为大数据的发展而发生着变化。大数据应用进一步促进安防行业的智能化,同时多传感器的融合应用也在逐步替代传统的单一视频应用。大数据应用的发展,将促使安防应用与行业业务应用进一步融合,提高安防产品在业务实战应用中的成效。从这个角度分析,应该看到大数据虽然给行业应用带来的价值没有民用领域的大,但要看到其对产业的影响和推动是巨大的。
视频数据的应用障碍
大数据技术兴起于互联网行业,其对互联网的结构化数据和半结构化数据具有良好的适应性,但安防行业存在大量的非结构化数据,直接利用当前的大数据技术开展非结构化数据的分析是相当困难的。目前安防行业正积极开展大数据技术与智能识别技术的结合,通过智能识别技术从视频、图片等非结构化数据中提取结构化或半结构化特征数据,然后利用逐步成熟的大数据技术开展数据分析挖掘。
当前安防行业的大数据还主要集中在卡口数据,特别是交通卡口采集的车辆通行信息。但随着Smart IPC的进一步推广应用,泛卡口采集的车辆、人员、行为等数据,将成为新的数据分析热点。
泛IT化合作
安防行业的技术发展相对整个IT行业,还是稍微滞后。当前大数据在互联网的应用最为广泛,且卓有成效,IT厂商在大数据领域积累了大量的技术和经验。在大数据市场的应用过程中,安防厂商的首要目标是解决用户的需求,如果采取自身研发,不仅存在技术薄弱、人才匮乏等问题,同时也是项目时间所不能允许的。因此,与IT厂商的合作必然是最为可行的方式,形成泛IT化的应用模式,将安防大数据的应用与其他行业挂钩,用反渗透的思维形成利益共同体,打造安防大数据模式下的产业联盟
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05