
行业应用成效显著 大数据未来可期
在智能交通领域,大数据分析在各地交通管理部门中得以实施。从当前的数据分析应用看,主要聚焦在交通流量分析和车辆线索发现两方面。交通流量分析可为交通诱导、道路拥塞分析提供辅助性数据,弥补采样GPS信息进行交通流量分析的不足。在车辆线索发现方面,目前在套牌车辆分析以及车辆跟随分析方面成效显著。
大数据优势明显
毫无疑问,安防领域的用户越来越重视数据的价值,期望大数据技术能帮助其创新业务应用,特别是政府部门和企业商铺。政府部门通过十几年的信息化建设,特别是最近几年治安监控、道路卡口的成体系建设,采集了大量的数据资源,这些数据资源目前正亟待挖掘分析,以便提高社会治安管理成效,打击有组织犯罪,改善城市交通等。在企业商铺方面,则重点关注客流分析、热点商品等,用于进一步提高经营效率。
实践证明,这些技术的应用将颠覆已有靠人力脑力分析的管理经营模式,将业务管理和商业利润以数据化进行运行。因为传统的商务智能可以解决部分用户的数据挖掘需求,但当数据大规模增长时,传统的技术显得力不从心。利用累积的大数据资源,以及快速发展的大数据技术,可以深度挖掘安防领域的视频数据,在时间跨度和空间广度范围分析用户行为模式,为用户的经营或管理决策提供数据支撑。
民用领域商机更大
安防大数据有两个领域:一个是行业,一个是民用。行业领域的业务目标主要是协助业主创造价值,以及提高业主数据资产的附加值,因此充分开展视频分析,促进视频数据与行业业务数据的融合分析,创新行业应用新模式,是最为可行的商业模式。民用领域则跟当前的互联网商业模式比较接近,通过扩大用户规模,提供数据服务,深入挖掘用户消费习惯模式和潜在需求趋向,优化资源配置,是主要的商业模式。从这两个领域来看,民用领域的商业机会可能更多一点,因为通过公共的数据平台,能够吸引大量第三方的服务商一起提供多样化的服务,满足公众领域各式各样的客户需求。
但目前来看,真正实现大数据价值的还是在行业领域。从整体的格局来看,自从大数据技术在安防行业落地后,正对安防的产业格局产生积极的影响。安防建设从早期的模拟到数字,再到高清,产业发展的方向正因为大数据的发展而发生着变化。大数据应用进一步促进安防行业的智能化,同时多传感器的融合应用也在逐步替代传统的单一视频应用。大数据应用的发展,将促使安防应用与行业业务应用进一步融合,提高安防产品在业务实战应用中的成效。从这个角度分析,应该看到大数据虽然给行业应用带来的价值没有民用领域的大,但要看到其对产业的影响和推动是巨大的。
视频数据的应用障碍
大数据技术兴起于互联网行业,其对互联网的结构化数据和半结构化数据具有良好的适应性,但安防行业存在大量的非结构化数据,直接利用当前的大数据技术开展非结构化数据的分析是相当困难的。目前安防行业正积极开展大数据技术与智能识别技术的结合,通过智能识别技术从视频、图片等非结构化数据中提取结构化或半结构化特征数据,然后利用逐步成熟的大数据技术开展数据分析挖掘。
当前安防行业的大数据还主要集中在卡口数据,特别是交通卡口采集的车辆通行信息。但随着Smart IPC的进一步推广应用,泛卡口采集的车辆、人员、行为等数据,将成为新的数据分析热点。
泛IT化合作
安防行业的技术发展相对整个IT行业,还是稍微滞后。当前大数据在互联网的应用最为广泛,且卓有成效,IT厂商在大数据领域积累了大量的技术和经验。在大数据市场的应用过程中,安防厂商的首要目标是解决用户的需求,如果采取自身研发,不仅存在技术薄弱、人才匮乏等问题,同时也是项目时间所不能允许的。因此,与IT厂商的合作必然是最为可行的方式,形成泛IT化的应用模式,将安防大数据的应用与其他行业挂钩,用反渗透的思维形成利益共同体,打造安防大数据模式下的产业联盟
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23