京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的反面 大数据不能做什么
人们对大数据寄予了许多的希望:卖出更多的货物,做出更好的产品,找到更酷的朋友,甚至帮我们决定明天早上是否睡个懒觉。现在,凡是有信息流通的地方,都有人们对大数据的期望。
大数据果真如此神通吗?大数据不能做什么?下面从几个方面来谈谈大数据的反面。
一、大数据不能对具体行为作出精确预测
事实上,人们的社会行为具有不可预测性。甚至我们不妨可以定性地归成一个大数据测不准原理:人和事件,如果放到越大的空间和时间范围,则是越可以精确预测的;如果放到越小的空间和时间范围,则是越不可以精确预测的。
举个例子说:我们几乎可以在100%的程度上预测一个人24小时的范围内会吃饭,但若精确到某一分钟,则几乎不可能预测准确。进一步我们会发现,利用更多过去一段时间的数据,能够帮助我们提高预测某半个小时内是否吃饭的几率,但如果把时间精确到某一分钟,则更多的数据几乎提高不了预测的准确性。
其实,行为的不可预测性早已植根于人类的潜意识中。
比如,我国前一阵子发射了嫦娥三号探月飞船,在嫦娥三号发射前,科学家们已经计算出了在未来的一个月之后的某个小时、分、秒,嫦娥三号在月球上空高度和经纬度,如果这个计算结果偏离预计几十米,则可能推迟发射,重新计算校准。这是科学对未来的精确预测。
相对的情形是,在晚上10点以后,当我们准备睡觉的时候,能预测明天早餐后下楼碰到的第一个人是谁吗?几乎没有人能知道,但这个巨大的不可预测却没有引起人的关注,几乎没有人会因为不知道下楼碰到的第一个人是谁而影响睡觉。人们对不可预测性熟视无睹。
大数据的有效范围讨论,需要引进一个假设:人们可以自由决定自己的行为(常常称为“自由意志”)。一个人自由决定自己行为,在别人看来,就是他的行为无法预测,如果能够精确预测未来的一举一动,就不具备任何的自我决定的自由。
因此,大数据不能对具体行为作出精确预测,即大数据测不准原理。
大数据的不可预测性说明,企图利用大数据预测用户具体行为的努力或许是徒劳的,我们哪怕掌握一个人从出生开始就有的全部行为信息,也无法预测明天早餐他会吃什么。这也意味着,许多基于用户历史数据进行行为分析的努力会遇到瓶颈,预测缩小到一定范围之后,无法再精确下去。
二、大数据不能用来消除不确定性
大数据不能对具体行为进行预测,还表现大型社区的行为预测上。
最近,很多城市的商业中心开始引入了大数据技术,希望对用户行为作出精确的预测来提高商业中心的有效使用。从单个商家的角度出发,知道进店顾客的精确行为,能提供更针对性的服务,但是,从整个商区的角度来做预测会出现悖论。
之所以大型商圈不仅仅有购物超市,还有甜品店、美食街,人们不是冲着甜品店、美食街来的,但是,因为人们行为的不确定性,不知道购买衬衣、牛奶等生活用品究竟会花多长时间,购物间隙才有了甜品的用武之地,如果购物结束靠近用餐时间,美食街也会有生意。
不仅甜品、美食,商场里的新商品也都是因为人们行为的不确定才被销售出去的,因为新产品并不在人们计划购物的范围内。如果刻意增加购物预测的精确性将会怎样?甜品店、美食街甚至电影院都将是多余的。
生态之美源于不确定性,生态中每一个参与者都表现出足够的自由度,世界才会丰富多彩,大型商业区具有生态特征,对生态型社区进行精确预测,会让整个社区失去生机,所以大数据不能够用来消除生态中的不确定性。
三、大数据不能预测新业务
大数据的宣讲案例中,常常有一个啤酒和尿不湿的故事,建议把啤酒和尿不湿放在一起卖,说是数据统计发现,男人买啤酒的时候会顺便买尿不湿,这显然是一个误导,因为小孩需要尿不湿大概只有3年,一个活70年的男人,只有几年处在需要给孩子买尿不湿的情况,也就是说,大多数情况下,买啤酒的男人没有买尿不湿的必要。
当然,买啤酒和买尿不湿在一定的情况下会成为关联事件,比如一个青年公寓,生孩子的情况比较集中,但是,此时数据出现关联只是结果,青年公寓才是原因。
一些极端情况下,根据数据进行类似啤酒和尿不湿搭配可能会出问题,比如香水和避孕套,男人在逛超市时为取哄情人会买香水,当然,也会偷偷买好避孕套,但是,如果把香水和避孕套放在一起,让男人当着情人面去买避孕套就会产生问题。
不能从大数据的相关性直接得出结论,而是要先确定业务逻辑,再用数据相关性去验证。数据只是行为的结果而不是相反,大数据之所以能够辅助预测,是因为人的行为具有规律性,一个具有朝九晚五、周末大休规律的白领,行为数据才会呈现出以日、周、月、年为周期。
创新业务,也就是跟过去不一样的业务,因此,大数据是没法预测新业务的,也没法根据数据分析确定新出现的业务关联性是临时的,还是可持续的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10