
大数据的反面 大数据不能做什么
人们对大数据寄予了许多的希望:卖出更多的货物,做出更好的产品,找到更酷的朋友,甚至帮我们决定明天早上是否睡个懒觉。现在,凡是有信息流通的地方,都有人们对大数据的期望。
大数据果真如此神通吗?大数据不能做什么?下面从几个方面来谈谈大数据的反面。
一、大数据不能对具体行为作出精确预测
事实上,人们的社会行为具有不可预测性。甚至我们不妨可以定性地归成一个大数据测不准原理:人和事件,如果放到越大的空间和时间范围,则是越可以精确预测的;如果放到越小的空间和时间范围,则是越不可以精确预测的。
举个例子说:我们几乎可以在100%的程度上预测一个人24小时的范围内会吃饭,但若精确到某一分钟,则几乎不可能预测准确。进一步我们会发现,利用更多过去一段时间的数据,能够帮助我们提高预测某半个小时内是否吃饭的几率,但如果把时间精确到某一分钟,则更多的数据几乎提高不了预测的准确性。
其实,行为的不可预测性早已植根于人类的潜意识中。
比如,我国前一阵子发射了嫦娥三号探月飞船,在嫦娥三号发射前,科学家们已经计算出了在未来的一个月之后的某个小时、分、秒,嫦娥三号在月球上空高度和经纬度,如果这个计算结果偏离预计几十米,则可能推迟发射,重新计算校准。这是科学对未来的精确预测。
相对的情形是,在晚上10点以后,当我们准备睡觉的时候,能预测明天早餐后下楼碰到的第一个人是谁吗?几乎没有人能知道,但这个巨大的不可预测却没有引起人的关注,几乎没有人会因为不知道下楼碰到的第一个人是谁而影响睡觉。人们对不可预测性熟视无睹。
大数据的有效范围讨论,需要引进一个假设:人们可以自由决定自己的行为(常常称为“自由意志”)。一个人自由决定自己行为,在别人看来,就是他的行为无法预测,如果能够精确预测未来的一举一动,就不具备任何的自我决定的自由。
因此,大数据不能对具体行为作出精确预测,即大数据测不准原理。
大数据的不可预测性说明,企图利用大数据预测用户具体行为的努力或许是徒劳的,我们哪怕掌握一个人从出生开始就有的全部行为信息,也无法预测明天早餐他会吃什么。这也意味着,许多基于用户历史数据进行行为分析的努力会遇到瓶颈,预测缩小到一定范围之后,无法再精确下去。
二、大数据不能用来消除不确定性
大数据不能对具体行为进行预测,还表现大型社区的行为预测上。
最近,很多城市的商业中心开始引入了大数据技术,希望对用户行为作出精确的预测来提高商业中心的有效使用。从单个商家的角度出发,知道进店顾客的精确行为,能提供更针对性的服务,但是,从整个商区的角度来做预测会出现悖论。
之所以大型商圈不仅仅有购物超市,还有甜品店、美食街,人们不是冲着甜品店、美食街来的,但是,因为人们行为的不确定性,不知道购买衬衣、牛奶等生活用品究竟会花多长时间,购物间隙才有了甜品的用武之地,如果购物结束靠近用餐时间,美食街也会有生意。
不仅甜品、美食,商场里的新商品也都是因为人们行为的不确定才被销售出去的,因为新产品并不在人们计划购物的范围内。如果刻意增加购物预测的精确性将会怎样?甜品店、美食街甚至电影院都将是多余的。
生态之美源于不确定性,生态中每一个参与者都表现出足够的自由度,世界才会丰富多彩,大型商业区具有生态特征,对生态型社区进行精确预测,会让整个社区失去生机,所以大数据不能够用来消除生态中的不确定性。
三、大数据不能预测新业务
大数据的宣讲案例中,常常有一个啤酒和尿不湿的故事,建议把啤酒和尿不湿放在一起卖,说是数据统计发现,男人买啤酒的时候会顺便买尿不湿,这显然是一个误导,因为小孩需要尿不湿大概只有3年,一个活70年的男人,只有几年处在需要给孩子买尿不湿的情况,也就是说,大多数情况下,买啤酒的男人没有买尿不湿的必要。
当然,买啤酒和买尿不湿在一定的情况下会成为关联事件,比如一个青年公寓,生孩子的情况比较集中,但是,此时数据出现关联只是结果,青年公寓才是原因。
一些极端情况下,根据数据进行类似啤酒和尿不湿搭配可能会出问题,比如香水和避孕套,男人在逛超市时为取哄情人会买香水,当然,也会偷偷买好避孕套,但是,如果把香水和避孕套放在一起,让男人当着情人面去买避孕套就会产生问题。
不能从大数据的相关性直接得出结论,而是要先确定业务逻辑,再用数据相关性去验证。数据只是行为的结果而不是相反,大数据之所以能够辅助预测,是因为人的行为具有规律性,一个具有朝九晚五、周末大休规律的白领,行为数据才会呈现出以日、周、月、年为周期。
创新业务,也就是跟过去不一样的业务,因此,大数据是没法预测新业务的,也没法根据数据分析确定新出现的业务关联性是临时的,还是可持续的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11