
大数据的反面 大数据不能做什么
人们对大数据寄予了许多的希望:卖出更多的货物,做出更好的产品,找到更酷的朋友,甚至帮我们决定明天早上是否睡个懒觉。现在,凡是有信息流通的地方,都有人们对大数据的期望。
大数据果真如此神通吗?大数据不能做什么?下面从几个方面来谈谈大数据的反面。
一、大数据不能对具体行为作出精确预测
事实上,人们的社会行为具有不可预测性。甚至我们不妨可以定性地归成一个大数据测不准原理:人和事件,如果放到越大的空间和时间范围,则是越可以精确预测的;如果放到越小的空间和时间范围,则是越不可以精确预测的。
举个例子说:我们几乎可以在100%的程度上预测一个人24小时的范围内会吃饭,但若精确到某一分钟,则几乎不可能预测准确。进一步我们会发现,利用更多过去一段时间的数据,能够帮助我们提高预测某半个小时内是否吃饭的几率,但如果把时间精确到某一分钟,则更多的数据几乎提高不了预测的准确性。
其实,行为的不可预测性早已植根于人类的潜意识中。
比如,我国前一阵子发射了嫦娥三号探月飞船,在嫦娥三号发射前,科学家们已经计算出了在未来的一个月之后的某个小时、分、秒,嫦娥三号在月球上空高度和经纬度,如果这个计算结果偏离预计几十米,则可能推迟发射,重新计算校准。这是科学对未来的精确预测。
相对的情形是,在晚上10点以后,当我们准备睡觉的时候,能预测明天早餐后下楼碰到的第一个人是谁吗?几乎没有人能知道,但这个巨大的不可预测却没有引起人的关注,几乎没有人会因为不知道下楼碰到的第一个人是谁而影响睡觉。人们对不可预测性熟视无睹。
大数据的有效范围讨论,需要引进一个假设:人们可以自由决定自己的行为(常常称为“自由意志”)。一个人自由决定自己行为,在别人看来,就是他的行为无法预测,如果能够精确预测未来的一举一动,就不具备任何的自我决定的自由。
因此,大数据不能对具体行为作出精确预测,即大数据测不准原理。
大数据的不可预测性说明,企图利用大数据预测用户具体行为的努力或许是徒劳的,我们哪怕掌握一个人从出生开始就有的全部行为信息,也无法预测明天早餐他会吃什么。这也意味着,许多基于用户历史数据进行行为分析的努力会遇到瓶颈,预测缩小到一定范围之后,无法再精确下去。
二、大数据不能用来消除不确定性
大数据不能对具体行为进行预测,还表现大型社区的行为预测上。
最近,很多城市的商业中心开始引入了大数据技术,希望对用户行为作出精确的预测来提高商业中心的有效使用。从单个商家的角度出发,知道进店顾客的精确行为,能提供更针对性的服务,但是,从整个商区的角度来做预测会出现悖论。
之所以大型商圈不仅仅有购物超市,还有甜品店、美食街,人们不是冲着甜品店、美食街来的,但是,因为人们行为的不确定性,不知道购买衬衣、牛奶等生活用品究竟会花多长时间,购物间隙才有了甜品的用武之地,如果购物结束靠近用餐时间,美食街也会有生意。
不仅甜品、美食,商场里的新商品也都是因为人们行为的不确定才被销售出去的,因为新产品并不在人们计划购物的范围内。如果刻意增加购物预测的精确性将会怎样?甜品店、美食街甚至电影院都将是多余的。
生态之美源于不确定性,生态中每一个参与者都表现出足够的自由度,世界才会丰富多彩,大型商业区具有生态特征,对生态型社区进行精确预测,会让整个社区失去生机,所以大数据不能够用来消除生态中的不确定性。
三、大数据不能预测新业务
大数据的宣讲案例中,常常有一个啤酒和尿不湿的故事,建议把啤酒和尿不湿放在一起卖,说是数据统计发现,男人买啤酒的时候会顺便买尿不湿,这显然是一个误导,因为小孩需要尿不湿大概只有3年,一个活70年的男人,只有几年处在需要给孩子买尿不湿的情况,也就是说,大多数情况下,买啤酒的男人没有买尿不湿的必要。
当然,买啤酒和买尿不湿在一定的情况下会成为关联事件,比如一个青年公寓,生孩子的情况比较集中,但是,此时数据出现关联只是结果,青年公寓才是原因。
一些极端情况下,根据数据进行类似啤酒和尿不湿搭配可能会出问题,比如香水和避孕套,男人在逛超市时为取哄情人会买香水,当然,也会偷偷买好避孕套,但是,如果把香水和避孕套放在一起,让男人当着情人面去买避孕套就会产生问题。
不能从大数据的相关性直接得出结论,而是要先确定业务逻辑,再用数据相关性去验证。数据只是行为的结果而不是相反,大数据之所以能够辅助预测,是因为人的行为具有规律性,一个具有朝九晚五、周末大休规律的白领,行为数据才会呈现出以日、周、月、年为周期。
创新业务,也就是跟过去不一样的业务,因此,大数据是没法预测新业务的,也没法根据数据分析确定新出现的业务关联性是临时的,还是可持续的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25