
大数据不是万能水晶球 这些事不要指望它
大数据是怎么预测的?
现在,大数据预测已经被应用到了各种领域,比如预测奥斯卡奖得主;预测世界杯赛事结果;预测高考作文题目等等,可见大数据预测已经成为了一种势不可挡的趋势。
维基(wikibon)预计大数据市场从2011年到2026年将获得17%年复合增长率,将在2026年达到840亿美元的高峰。大数据市场从2013年的196亿美元增至2014年的273.6亿美元。
大数据是怎么预测的?
预测性分析是大数据最核心的功能。那么,大数据是如何实现未卜先知的能力呢?首先,必须有“现在”足够海量的用户行为数据,数据量越大,就越有参考价值,准确度更高。
其次,对用户“过去”纷繁的行为数据进行分类和总结,形成经验和智慧,为大数据的分析和处理提供可靠的逻辑。最后,通过智能的大数据分析,得出预判,这才是大数据最具备价值的产出。
大数据不能做什么?
人们对大数据给予了很多希望,希望做出更优秀的产品;希望卖出更多商品等等,然而大数据并不是巫婆的水晶球,什么都可以预测,大数据也有短板。
美国统计学家内特·希尔擅长利用大数据进行预测。在上一次美国总统大选期间,他非常准确的预测了美国50个州的投票胜负。但他认为,大数据也不是万能的,有些领域的预测成功率就很低,比如地震,比如股市。
此外,人们的社会行为具有不可预测性。人是可以自由决定自己的行为的,我们可以预测某人,明天会吃饭,但没人可以预测,这个人明天几分几秒会去吃饭,因此人的行为,如果放到越大的空间和时间范围,则是越可以精确预测的;如果放到越小的空间和时间范围,则是越不可以精确预测的。
还记得前文说的,大数据预测时要对过去的行为数据进行分类和总结,所以,对于创新业务大数据是没法预测的,也没法根据数据分析确定新出现的业务关联性是临时的,还是可持续的。
虽然大数据在很多领域为人们打来了很大收获,但大数据不是万能的水晶球,它是信息时代的一个伟大的工具,它有它擅长的领域,也有不擅长的领域。数据是行为的结果,它可以根据规律分析预测某一群体的某一趋势,预测到一些共性的东西,但是无法预测个性的东西,比如我们即使掌握一个人从出生开始的全部行为信息,也无法预测明天早餐他会吃什么。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12