
用好气象大数据,更大程度减灾防灾
在大数据时代,气象服务在不断拓宽领域,从最基础的天气预报到现有的气候预测、气候可行性论证、公共气象服务、专业专项气象服务、气象防灾减灾,为社会创造财富、减轻损失,大数据已成为气象服务不断创新和完善的重要支撑。
天气预报同大量数据“打交道”
毫不夸张地说,气象部门就是一个超大的数据库,里面存储了海量的数据。从业务角度对气象数据进行划分,包括气象观测数据和气象产品数据。
气象观测数据是开展各项气象业务的基础,人们从电视、报纸或网站获取的天气预报信息,其后有着非常庞杂的数据采集,包括全国2000多个地面站、120多个高空探测站、6颗在轨卫星、5万多个自动监测站、600多个农业监测站、300多个雷达站等,逐日逐小时甚至到逐分钟扫描着各种各样的大气数据。
针对不同领域、不同行业,气象部门还要制作相应的气象产品。例如提供给政府的决策气象服务,水利、电力、交通、农业等部门对气象也各有需求。
已知数据 模拟几千年前气象
量化一切,是数据化的核心。就气象数据自身而言,我们可以由已知的数据模拟得到过去几千年、几万年甚至更久以前的气象数据,也可以通过这些数据去预测多年后的气象环境。
大数据时代观点认为,对大数据进行相对简单的相关运算,永远比对小数据进行复杂运算得出的结果准确。在一定程度上来说,气象部门一直在做这样的事,例如我们常用到的“遥相关”、“模式耦合”等运算方法,正是在寻求气象要素之间,以及气象与其它事物之间的相关关系。
气象部门现有的服务包括面向政府的决策气象服务,面向社会群体的公众气象服务,面向水利、电力、交通、农业以及其它部门或企业的专业专项服务,以及针对干旱、暴雨洪涝、森林火险、冰雹、雷电等灾害性天气的气象灾害预报预警服务。而气象预警的确定,需要非常复杂的气象数据分析,再综合地形、地貌等数据以及预报员自身的经验进行分析。
云计算助力防灾减灾
气象数据的大量搜集、处理和分析,对硬、软件的要求更为苛刻,传统的处理设备难以满足大数据处理的功能和性能要求。大数据与云计算是一个问题的两面,一个是问题,一个是解决问题的方法。
当越来越多的需求出现时,向虚拟的“云端”提出申请,“云端”为该需求迅速组织计算资源,而在计算结束并将结果反馈后,“云端”又可将这些临时组织起来的资源快速释放。这样既提高了资源利用率,也使得我们不必为了复杂的运算一味追求昂贵的超级计算机。
云计算使得大数据处理更方便、更快速、更省时省力,这在气象防灾减灾中意义重大。要提高预报预警准确率、科学评估灾害,必须要纳入除气象数据以外的大量其他各行各业的数据,传统的设备无法快速处理,这无疑是和生命财产安全抢夺时间,而云计算可以很好地规避这个问题。
数据共享 打破数据壁垒
总的说来,气象大数据也就是气象数据加上行业数据分析得出事情变化规律和对未来的一些预测。
比如说能源,可以通过分析电力负荷历史,加上气象数据进行用电量估算;比如农业,可以通过某一地的农耕历史加上气候信息就可进行农作物结构调整指导;还有交通,航班准点率历史加上机场历史天气特征,就可得到航班延误预测;还有公共卫生,通过门诊量和药品销量加上气象历史就可推测发病率趋势;而在饮品方面,通过销量和气象要素关联就可掌握销量变化。
然而,在实现气象大数据的过程中,数据壁垒是一个实实在在的障碍。我们需要建立双方及多方的信息基础环境进行数据融合,对各个行业的数据都需要融合深度分析。所以,用好气象大数据,必须打破各行业之间的数据壁垒,真正做到数据共享,才能更大地实现气象大数据的价值,从而更大程度减轻灾害损失,为社会创造更多财富。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18