
用好气象大数据,更大程度减灾防灾
在大数据时代,气象服务在不断拓宽领域,从最基础的天气预报到现有的气候预测、气候可行性论证、公共气象服务、专业专项气象服务、气象防灾减灾,为社会创造财富、减轻损失,大数据已成为气象服务不断创新和完善的重要支撑。
天气预报同大量数据“打交道”
毫不夸张地说,气象部门就是一个超大的数据库,里面存储了海量的数据。从业务角度对气象数据进行划分,包括气象观测数据和气象产品数据。
气象观测数据是开展各项气象业务的基础,人们从电视、报纸或网站获取的天气预报信息,其后有着非常庞杂的数据采集,包括全国2000多个地面站、120多个高空探测站、6颗在轨卫星、5万多个自动监测站、600多个农业监测站、300多个雷达站等,逐日逐小时甚至到逐分钟扫描着各种各样的大气数据。
针对不同领域、不同行业,气象部门还要制作相应的气象产品。例如提供给政府的决策气象服务,水利、电力、交通、农业等部门对气象也各有需求。
已知数据 模拟几千年前气象
量化一切,是数据化的核心。就气象数据自身而言,我们可以由已知的数据模拟得到过去几千年、几万年甚至更久以前的气象数据,也可以通过这些数据去预测多年后的气象环境。
大数据时代观点认为,对大数据进行相对简单的相关运算,永远比对小数据进行复杂运算得出的结果准确。在一定程度上来说,气象部门一直在做这样的事,例如我们常用到的“遥相关”、“模式耦合”等运算方法,正是在寻求气象要素之间,以及气象与其它事物之间的相关关系。
气象部门现有的服务包括面向政府的决策气象服务,面向社会群体的公众气象服务,面向水利、电力、交通、农业以及其它部门或企业的专业专项服务,以及针对干旱、暴雨洪涝、森林火险、冰雹、雷电等灾害性天气的气象灾害预报预警服务。而气象预警的确定,需要非常复杂的气象数据分析,再综合地形、地貌等数据以及预报员自身的经验进行分析。
云计算助力防灾减灾
气象数据的大量搜集、处理和分析,对硬、软件的要求更为苛刻,传统的处理设备难以满足大数据处理的功能和性能要求。大数据与云计算是一个问题的两面,一个是问题,一个是解决问题的方法。
当越来越多的需求出现时,向虚拟的“云端”提出申请,“云端”为该需求迅速组织计算资源,而在计算结束并将结果反馈后,“云端”又可将这些临时组织起来的资源快速释放。这样既提高了资源利用率,也使得我们不必为了复杂的运算一味追求昂贵的超级计算机。
云计算使得大数据处理更方便、更快速、更省时省力,这在气象防灾减灾中意义重大。要提高预报预警准确率、科学评估灾害,必须要纳入除气象数据以外的大量其他各行各业的数据,传统的设备无法快速处理,这无疑是和生命财产安全抢夺时间,而云计算可以很好地规避这个问题。
数据共享 打破数据壁垒
总的说来,气象大数据也就是气象数据加上行业数据分析得出事情变化规律和对未来的一些预测。
比如说能源,可以通过分析电力负荷历史,加上气象数据进行用电量估算;比如农业,可以通过某一地的农耕历史加上气候信息就可进行农作物结构调整指导;还有交通,航班准点率历史加上机场历史天气特征,就可得到航班延误预测;还有公共卫生,通过门诊量和药品销量加上气象历史就可推测发病率趋势;而在饮品方面,通过销量和气象要素关联就可掌握销量变化。
然而,在实现气象大数据的过程中,数据壁垒是一个实实在在的障碍。我们需要建立双方及多方的信息基础环境进行数据融合,对各个行业的数据都需要融合深度分析。所以,用好气象大数据,必须打破各行业之间的数据壁垒,真正做到数据共享,才能更大地实现气象大数据的价值,从而更大程度减轻灾害损失,为社会创造更多财富。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07