京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python函数参数类型*、**的区别
刚开始学习python,python相对于java确实要简洁易用得多。内存回收类似hotspot的可达性分析, 不可变对象也如同java得Integer类型,with函数类似新版本C++的特性,总体来说理解起来比较轻松。只是函数部分参数的"*"与"**",闭包等问题,着实令人迷糊了一把,弄清概念后写下此文记录下来,也希望本文能够帮助其他初学者。
所以本文是一篇学习笔记,着重于使用的细节和理解上,首先分别介绍了函数各种参数类型在调用和声明时的区别,及其在混用时需要注意的一些细节,之后讲了闭包相关的内容。如果有不对的地方欢迎指正。
函数参数不带“*”,"*" 与 "**"的区别
理解这个问题得关键在于要分开理解调用和声明语法中3者得区别.
函数调用区别
1. 不同类型的参数简述
#这里先说明python函数调用得语法为:

举个例子来说明这4种调用方式得区别:
#这种调用方式的函数处理等价于
a,b,c,d,e = 1,2,3,4,5
print a,b,c,d,e
#-------------------------------
#keyword_args方式
>>> test(a=1,b=3,c=4,d=2,e=1)
1 3 4 2 1
#这种处理方式得函数处理等价于
a=1
b=3
c=4
d=2
e=1
print a,b,c,d,e
#-------------------------------
#*tuple_grp_nonkw_args方式
>>> x = 1,2,3,4,5
>>> test(*x)
1 2 3 4 5
#这种方式函数处理等价于
#---------------------------------
#**dict_grp_kw_args方式
>>> y
{'a': 1, 'c': 6, 'b': 2, 'e': 1, 'd': 1}
>>> test(**y)
1 2 6 1 1
#这种函数处理方式等价于
a = y['a']
b = y['b']
... #c,d,e不再赘述
print a,b,c,d,e
2. 不同类型参数混用需要注意的一些细节
接下来说明不同参数类型混用的情况,要理解不同参数混用得语法需要理解以下几方面内容.
首先要明白,函数调用使用参数类型必须严格按照顺序,不能随意调换顺序,否则会报错. 如 (a=1,2,3,4,5)会引发错误,; (*x,2,3)也会被当成非法.
其次,函数对不同方式处理的顺序也是按照上述的类型顺序.因为#keyword_args方式和**dict_grp_kw_args方式对参数一一指定,所以无所谓顺序.所以只需要考虑顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的顺序.因此,可以简单理解为只有#positional_args方式,#*tuple_grp_nonkw_args方式有逻辑先后顺序的.
最后,参数是不允许多次赋值的.
举个例子说明,顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的逻辑先后关系:
#错误的例子
>>> test(1,b=2,*x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: test() got multiple values for keyword argument 'b'
#正确的例子1,处理等价于
a,b = 1,2 #顺序参数
c,d,e = x #列表参数
print a,b,c,d,e
#正确的例子2,处理等价于
a = 1 #顺序参数
e = 2 #关键字参数
b,c,d = x #列表参数
#错误的例子,处理等价于
a = 1 #顺序参数
b = 2 #关键字参数
b,c,d = x #列表参数
#这里由于b多次赋值导致异常,可见只有顺序参数和列表参数存在罗辑先后关系
函数声明区别
理解了函数调用中不同类型参数得区别之后,再来理解函数声明中不同参数得区别就简单很多了.
1. 函数声明中的参数类型说明
函数声明只有3种类型, arg, *arg , **arg 他们得作用和函数调用刚好相反.
调用时*tuple_grp_nonkw_args将列表转换为顺序参数,而声明中的*arg的作用是将顺序赋值(positional_args)转换为列表.
调用时**dict_grp_kw_args将字典转换为关键字参数,而声明中**arg则反过来将关键字参数(keyword_args)转换为字典.
特别提醒:*arg 和 **arg可以为空值.
以下举例说明上述规则:
#----------------------------
#*arg将顺positional_args转换为列表
>>> test2(1,2,[1,2],{'a':1,'b':2})
1 (2, [1, 2], {'a': 1, 'b': 2}) {}
#该处理等价于
a = 1 #arg参数处理
b = 2,[1,2],{'a':1,'b':2} #*arg参数处理
c = dict() #**arg参数处理
print a,b,c
#-----------------------------
#**arg将keyword_args转换为字典
>>> test2(1,2,3,d={1:2,3:4}, c=12, b=1)
1 (2, 3) {'c': 12, 'b': 1, 'd': {1: 2, 3: 4}}
#该处理等价于
a = 1 #arg参数处理
b= 2,3 #*arg参数处理
#**arg参数处理
c = dict()
c['d'] = {1:2, 3:4}
c['c'] = 12
c['b'] = 1
print a,b,c
2. 处理顺序问题
函数总是先处理arg类型参数,再处理*arg和**arg类型的参数. 因为*arg和**arg针对的调用参数类型不同,所以不需要考虑他们得顺序.
闭包
python的函数,原本只能访问两个区域的变量:全局,和局部(函数上下文).
实际上,函数本身也是一个对象,也有自己的作用域. 闭包通过函数与引用集合的组合,使得函数可以在它被定义的区域之外执行.
这个集合可以通过func_closure来获取这个引用集合.
这与python处理全局变量得方式一样,只不过全局变量将引用集合存储在__globals__字段中.func_closure是一个存储cell类型的元组,每个cell存储一个上下文变量.
另外,旧版本得python的内部函数不能在其他作用域使用的原因,并不是因为每个作用域的变量严格相互隔离,而是脱离原本的作用域后,函数失去了原本上下文的引用。需要注意的是,闭包存储的上下文信息一样是浅拷贝,所以传递给内部函数的可变对象仍然会被其他拥有该对象引用得变量修改.
举个例子:
>>> def foo(x,y):
... def bar():
... print x,y
... return bar
...
#查看func_closure的引用信息
>>> a = [1,2]
>>> b = foo(a,0)
>>> b.func_closure[0].cell_contents
[1, 2]
>>> b.func_closure[1].cell_contents
0
>>> b()
[1, 2] 0
#可变对象仍然能被修改
>>> a.append(3)
>>> b.func_closure[0].cell_contents
[1, 2, 3]
>>> b()
[1, 2, 3] 0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01