京公网安备 11010802034615号
经营许可证编号:京B2-20210330
站在大数据时代的风口,一切皆有可能
大数据一词近年炙手可热,而大数据究竟是什么或者能做什么,公众并不太清楚。当描绘大数据的时候,通常听到的会是除了身份等基本信息之外,每个人生活中的一切活动,包括消费习惯、对话、社交、移动都会被储存记录,并用以分析。这样的描述有助于增进对大数据“怎么来”的感性理解,却未能呈现它能“做什么”。随着互联网的发展和信息数字化程度的指数级增长,这些收集起来的数据集所形成的大数据,经过分析和应用,可以在国防、公共服务、医疗、金融和企业创新等各行业各方面提升效率并创造新的可能——— 服务于当下并预测甚至规划未来。
有很多令人叹为观止的新兴领域或解决方案,其实都是以大数据为基础,例如:通过收集和分析医疗数据,研发新的医疗技术;通过对各类数据的关联分析,为金融反欺诈提供决策支持;区块链也是基于大数据实时分析的产品,建成后可以大幅增进信息透明度取代人工,银行将是成本和道德风险降低的受益者;美国本月刚宣布要建立全国武力使用数据手机系统来掌握警方对平民使用暴力和拘留所死亡事件发生的频度,以防止警察滥用暴力。包括最近很受关注的人工智能(AI)在内,都和大数据紧密相关。
从2012年美国启动“大数据研究和发展”计划以来,英国、澳大利亚、日本、韩国等多个国家亦推出了一系列积极拥抱大数据的政策。当然,美国依然是这场信息革命的领头羊,无论在数据源或分析工具、可视化呈现、决策支持方面,美国都最为成功。估值最高的大数据领域企业Palantir,最突出的案例是帮助美国政府猎杀本·拉丹;Ayasdi专注于医疗数据分析和人工智能,和多个顶级美国医院、药厂都有合作;Tab-leau和DO M O都是数据可视化方面的佼佼者;而在美国总统大选中因预测而备受关注的FiveThirtyEight,则是针对政治、文化、体育运动和经济热点进行大数据分析的博客。
中国也在加快进入大数据时代的步伐,近期刚提出建设国家新型城镇化大数据库。在此时启动大数据综合试验区,是十分有价值且有预见性的尝试,广东亦有一定的技术支持和开放环境。
不过,在大数据领域,我国还处于入门阶段,基础比较薄弱。首先,最大的问题是数据源缺乏。政府是最大的数据收集者和使用者,所以各国的大数据政策中,政府数据开放都是第一步。而我国的政府数据在收集方式及储存方式上都还很传统,医保、社保及住房信息尚未全国联网,政府预算和决算等财务信息也比较粗糙,数据源本身的质量和数量都有缺漏。企业所拥有的数据就更零碎,主要集中在BAT,如阿里的淘宝和支付宝,腾讯的微信和Q Q,百度的搜索引擎,而即便BA T都尚未能对大数据进行深入分析使用。私人部门拥有的数据都很零碎,因此,很多大热产品实质上都是假借大数据之名进行关联推送等浅层使用,只是通过刷用户活跃度和讲故事来圈钱。
大数据的应用,数据源、分析方法和科研支持,缺一不可。这需要从政府到企业、从高校到非营利部门的全方位支持。无论是数据的挖掘、数据分析和使用、数据可视化,中国都才刚到门边,对于利用大数据提升公共服务质量、执政透明度、开发新医疗技术或者探讨大数据使用和隐私保护的边界,就更是门外汉。但不要紧,全世界的大数据应用也不过才开始几年而已。大数据综合试验区是令人欣喜的尝试,除了一腔热情与政策优惠,更需要技术积累与科研支持。广东既然先迈出了这一步,可以从开放数据做起,加大科研力度,放开户籍政策吸引人才,并以政府购买服务等方式激励第三方企业的技术创新。站在大数据时代的风口,一切才刚开始,一切皆有可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01