京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python优化技巧之利用ctypes提高执行速度
首先给大家分享一个个人在使用python的ctypes调用c库的时候遇到的一个小坑
这次出问题的地方是一个C函数,返回值是malloc生成的字符串地址。平常使用也没问题,也用了有段时间, 没发现什么异常。
这次在测试中,发现使用这个过程会出现“段错误”,造成程序退出了。
经过排查, 确定问题原因是C函数的返回值问题,ctypes默认的函数返回类型是int类型。
需要在使用中设置返回类型,例如:
func.restype = c_char_p
下面我们就来详细探讨下ctypes的使用小技巧
ctypes 库可以让开发者借助C语言进行开发。这个引入C语言的接口可以帮助我们做很多事情,比如需要调用C代码的来提高性能的一些小型问题。通过它你可以接入Windows系统上的 kernel32.dll 和 msvcrt.dll 动态链接库,以及Linux系统上的 libc.so.6 库。当然你也可以使用自己的编译好的共享库
我们先来看一个简单的例子 我们使用 Python 求 1000000 以内素数,重复这个过程10次,并计算运行时间。
import math
from timeit import timeit
def check_prime(x):
values = xrange(2, int(math.sqrt(x)) + 1)
for i in values:
if x % i == 0:
return False
return True
def get_prime(n):
return [x for x in xrange(2, n) if check_prime(x)]
print timeit(stmt='get_prime(1000000)', setup='from __main__ import get_prime',
number=10)
Output
42.8259568214
下面用C语言写一个的 check_prime 函数,然后把它当作共享库(动态链接库)导入

使用以下命令生成 .so (shared object)文件
gcc -shared -o prime.so -fPIC prime.c
import ctypes
import math
from timeit import timeit
check_prime_in_c = ctypes.CDLL('./prime.so').check_prime
def check_prime_in_py(x):
values = xrange(2, int(math.sqrt(x)) + 1)
for i in values:
if x % i == 0:
return False
return True
def get_prime_in_c(n):
return [x for x in xrange(2, n) if check_prime_in_c(x)]
def get_prime_in_py(n):
return [x for x in xrange(2, n) if check_prime_in_py(x)]
py_time = timeit(stmt='get_prime_in_py(1000000)', setup='from __main__ import get_prime_in_py',
number=10)
c_time = timeit(stmt='get_prime_in_c(1000000)', setup='from __main__ import get_prime_in_c',
number=10)
print "Python version: {} seconds".format(py_time)
print "C version: {} seconds".format(c_time)
Output
Python version: 43.4539749622 seconds
C version: 8.56250786781 seconds
我们可以看到很明显的性能差距 这里 有更多的方法去判断一个数是否是素数
再来看一个复杂点的例子 快速排序
mylib.c
#include <stdio.h>
typedef struct _Range {
int start, end;
} Range;
Range new_Range(int s, int e) {
Range r;
r.start = s;
r.end = e;
return r;
}
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort(int arr[], const int len) {
if (len <= 0)
return;
Range r[len];
int p = 0;
r[p++] = new_Range(0, len - 1);
while (p) {
Range range = r[--p];
if (range.start >= range.end)
continue;
int mid = arr[range.end];
int left = range.start, right = range.end - 1;
while (left < right) {
while (arr[left] < mid && left < right)
left++;
while (arr[right] >= mid && left < right)
right--;
swap(&arr[left], &arr[right]);
}
if (arr[left] >= arr[range.end])
swap(&arr[left], &arr[range.end]);
else
left++;
r[p++] = new_Range(range.start, left - 1);
r[p++] = new_Range(left + 1, range.end);
}
}
gcc -shared -o mylib.so -fPIC mylib.c
使用ctypes有一个麻烦点的地方是原生的C代码使用的类型可能跟Python不能明确的对应上来。比如这里什么是Python中的数组?列表?还是 array 模块中的一个数组。所以我们需要进行转换
test.py
import ctypes
import time
import random
quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
r = [random.randrange(1, 100000000) for x in xrange(100000)]
arr = (ctypes.c_int * len(r))(*r)
nums.append((arr, len(r)))
init = time.clock()
for i in range(100):
quick_sort(nums[i][0], nums[i][1])
print "%s" % (time.clock() - init)
Output
1.874907
与Python list 的 sort 方法进行对比
?
import ctypes
import time
import random
quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
nums.append([random.randrange(1, 100000000) for x in xrange(100000)])
init = time.clock()
for i in range(100):
nums[i].sort()
print "%s" % (time.clock() - init)
Output
2.501257
至于结构体,需要定义一个类,包含相应的字段和类型
class Point(ctypes.Structure):
_fields_ = [('x', ctypes.c_double),
('y', ctypes.c_double)]
除了导入我们自己写的C语言扩展文件,我们还可以直接导入系统提供的库文件,比如linux下c标准库的实现 glibc
import time
import random
from ctypes import cdll
libc = cdll.LoadLibrary('libc.so.6') # Linux系统
# libc = cdll.msvcrt # Windows系统
init = time.clock()
randoms = [random.randrange(1, 100) for x in xrange(1000000)]
print "Python version: %s seconds" % (time.clock() - init)
init = time.clock()
randoms = [(libc.rand() % 100) for x in xrange(1000000)]
print "C version : %s seconds" % (time.clock() - init)
Output
Python version: 0.850172 seconds
C version : 0.27645 seconds
以上都是ctypes的基本技巧,对普通的开发人员来说,基本够用了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21