
如何成为一名数据科学家 | 学习篇(附视频中字)
数据科学家是21世纪最性感的职业,那么该如何成为一名数据科学家呢?HackerEarth的主题演讲中就回答了这一系列的问题。
HackerEarth的主题演讲围绕如何成为一名数据科学家解答了一系列问题。在这里我们把内容分成上下两篇,如何成为一名数据科学家之学习篇和面试篇。今天先给大家带来学习篇的内容。
在本篇中Jesse steinweg - woods向大家讲解了为什么现在是成为数据科学家的最佳时机;如何迈出成为数据科学家的第一步等问题。
关于主讲人:
Jesse steinweg - woods是Tronc的一名资深数据科学家,主攻文章的推荐系统和理解客户行为。此前,他在Argo Group Insurance工作,主要利用机器学习技术采用了新的定价模型。他在德克萨斯A&M大学获得了大气科学博士学位,他的研究领域是数值天气和气候预测。
CDA字幕组该讲座视频进行了汉化,附有中文字幕的视频如下:
针对不方面开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,文字版本如下:
(文末有彩蛋! )
欢迎收看今天的HackerEarth研讨会,今天的主题是关于如何成为一名数据科学家。我对此非常期待,希望你们也是如此。
让我简单的自我介绍一下,我叫Jesse Steinweg-Woods。我在德克萨斯州A&M大学获得大气科学专业的博士学位。我研究主攻数值天气和天气预测。之前我在Argo Group Insurance工作,2015年11月我成为了一名数据科学家。
我通过机器学习技术进行定价模型相关工作,这对于保险业来说是很新颖的。之后我将担任Tronc公司的一名高级数据科学家。
Tronc主要负责美国一些报纸的在线内容。例如洛杉矶时报、芝加哥论坛报、巴尔的摩太阳报、奥兰多哨兵报等等。我之后可能会参与到报纸网站推荐系统的开发,以及更好的理解用户等方面的工作。
为什么要为数据科学家?
首先我想谈谈为什么现在可能是成为数据科学家的好时机。
美国的Glassdoor是一个关注大量工作的统计信息,上面会发布公司面试、薪资信息。他们收集大量的数据 ,然后针对以下内容进行调查:包括工作的满意度、工作岗位的需求量、薪资、工作与生活的平衡等方面。然后把这些都整合为得分,得出最好工作的名单。
2016年数据科学家名列第一。但今年在Glassdoor上个月发布的名单中,数据科学家连续两年名列最好的工作的首位。目前它的成绩很不错。
indeed 数据科学家职业发展趋势
如果看到indeed关于数据科学家工作趋势的图,你可以看到它确实呈上升趋势。
我第一次听说数据科学这个概念是在2013年10月。之后经过一些思考和研究,我发现这实际是一个我可以从事的工作。
从这之后数据科学一直在上升发展。尤其是在2016年达到一个顶峰,这是市场需求。
这份工作能够给你提供良好的工作与生活平衡,有不错的薪资,让你有机会在众多的行业中工作,这是很有发展的。
如何成为数据科学家
这里有些关于数据科学家的搞笑表情包。我觉得这很搞笑,当中也有些是贴近事实。
对于不同的人群数据科学是不同的,这使得它很难以理解。不仅源于从事该工作的人群,也源于招募数据科学家人群的公司。
关于这份工作需要些什么?这当中存在许多误解,我将尝试从我自己的角度进行解释。
是否需要博士学位?
我发现经常被问到的是,数据科学家是否需要博士学位?
如果你询问没有博士学位的数据科学家,他们马上会回答"不需要”。
但是如果是像我一样,有博士学位的数据科学家给出的答案会很微妙。我不会回答不需要,而会说"这得看情况"。可能对人们来说,这不是一个满意的答案。
让我们看到来自招聘论坛Burtch Works的数据统计。
去年他们对许多数据科学家进行了调查。在这里你可以看到,许多数据科学家的实际上有博士学位。很大一部分至少有硕士学位,只有8%拥有学士学位。
我还看了一些我认识的数据科学家的简历,以及各种就业市场的情况,这些都符合我对该领域的了解。
因此,如果你想成为一名数据科学家,至少在美国,拥有硕士及以上学历是很重要的。我并不是说如今只有本科学历就无法成为数据科学家,有一些出色的数据科学家仅有本科学历。对于大多数人来说,获得硕士及以上学历在求职时是非常重要的。
我认为博士学位能让你更容易迈入求职大门。博士学历表明你能够在高强度下,面对棘手的问题并且快速的学习。作为数据科学家你需要大量的工作,我想这就是雇主看重博士学位的原因。
我还注意到,最终如果你想晋升到领导层。有博士学位会比有硕士学位更容易一些。并不是说这是不可能发生,但有博士学会会容易一些。
数据科学家的主要教育背景
数据科学家的背景涉及的领域较广,最热门的背景是数学和统计学。
有些人有工程学背景,以及计算机科学。数据科学混合了计算机科学、数学以及统计。
自然科学。我的博士学历是关于大气科学。该部分处于第四位。
然后是社会科学、经济学、商科、运筹学甚至还有医学,这些相关性不高。
数据科学中Python和R语言是最热门的两个编程语言。
不同背景的人群在选择这两种编程语言上有一定相关性。
统计学家更多使用R语言。但对于工程学、计算机科学和自然科学,Python显然更受欢迎。社会科学和经济领域更倾向于使用R语言。当然存在一些例外。
要掌握的基础知识
1. 选择一个为数据科学设计的开源语言
这里你基本上只有两个选择Python或R语言。
如果你对以上所有语言都不太熟悉,我个人建议你选择Python。
如果你都熟悉这些语言的话,R语言也是不错的选择。
但假如你是新手,你对这些一无所知那么建议选择Python。如果你已经很熟悉R语言了,那么就使用R语言。然后熟悉数据科学家在R语言中使用的流行的库。
曾经我研究过雇主一般更需要哪种职业技能。当中Python比R语言略胜一筹。
你还会发现在SAS和MATLAB上划了很大的叉,我不建议学习这些语言。因为它们不是开源的,它们需要付费,而且很昂贵。在找工作时这会有一定的局限性。例如创业公司缺少资金,他们需要很快的得到结果。他们不会有资金投入在Sas上 因为其license是很昂贵的。
这些需要付费的非开源工具的另一个缺点在于,使用文档少。
如Python和R语言的开源工具,就很容易在Stack Overflow等网站上找到你问题的答案。
由于SAS属于北卡罗莱纳州,编写该语言的公司。获得相关帮助的唯一途径是通过用户手册,或者熟悉SAS的人。比起Python和R语言,获得相关帮助是非常困难。
同时你也会遇到灵活性问题。大部分时间你唯一能使用的只有SAS和MATLAB工具。但是由于Python和R语言都很开放,你可以改变它的代码,非常的灵活。在数据科学中灵活性十分重要。因为在不同项目中要用到的东西也大不相同。
Burtch Works的调查再次证明了这点。
看到右侧的预测分析专家和左侧数据科学家,可以在SAS的使用上看到很大的区别。
预测分析更类似数据分析中SAS占43%,但在数据科学家中一直下降到3%。因此可以在工具使用上看到巨大的差异。预测分析中Python使用率仅为16%,但在数据科学家中一路攀升到53%。
因此通过这些信息,我认为你应该选择开源的工具,如Python或R语言。并远离那些昂贵的工具,如SAS或MATLAB。
我更喜欢Python,我认为从长远的角度这是更好的工具。这些是使用在Python数据栈中的一些常规的库。
Python Data Stack
建议学好使用这些库。
panda是十分出色的用于操纵数据的库,当中有数据框。如果你经常用的话,这将是你的主力。这是我遇到的设计得最出色的库之一。我强烈推荐。
NumPy和SciPy这两个库构成了其他很多库的主干。在快速高效地计算矩阵,处理优化问题,需要快速计算数字和矩阵方面的问题时,这两个库很实用。它们构成了其他很多工具的基础。
Matplotlib用于进行可视化。还有在Matplotlib上产生的工具例如Seaborn。Seaborn更容易使用一些,这也是对Matplotlib的抱怨之一,它不是太好使用。我同意这一点。
IPython能让在交互环境中输入代码,得到结果。Jupyter notebook能更好的记录你的工作,并与他人分享。
scikit-learn包含一些机器学习的库,适用于各种问题。文档十分出色,因此是值得掌握的库。因为文档十分出色,比较容易学。
2. 学好SQL很重要
学习SQL要么是通过实习,要么是通过自己摸索。好消息是SQL并不难学,它需要多练习。
我发现最适合练习SQL的就是这个网站sqlzoo.net。这能够引导你完成许多作为数据科学家的常见操作。因为与数据库交互是非常重要的,不能轻视这点。
当参加面试时,如果完全没有SQL的经验,这可能会给你亮红灯。所以确保掌握SQL是非常重要的。
3. 机器学习
这里我推荐三个资源,吴恩达的Coursera课程非常热门,在此我强烈推荐。
虽然是用MATLAB进行的编码,但是你不必使用MATLAB,这只是他教学的方式。我会更专注于他是如何进行这些算法的。这是开始进行机器学习的不错方式。
如果你准备好学习一些骨灰级内容的话,《统计学习导论》是不错的选择。这本书非常偏重数学部分,并不适合初学者。
当中使用R语言,我认为每个骨灰级的数据科学家都应该读读这本书。因为它详尽的囊括了所有你可能用到的机器学习算法,这是针对该主题我所知最好的书。我承认这本书很难读,但是如果你真的想好好掌握这方面内容的话,这本书是不二之选。
当然还有scikit-learn文档。
这是这个库的优势之一是有很多可以看的教程,可以指导你学习处理许多模型。以及根据对象的组成代码应该如何运行,如何与管道、交叉验证进行交互等等。这些都包含在文档中,通过这些教程会大大的帮助你。
4. 贝叶斯统计
数据科学家还需要掌握一些贝叶斯统计。这当然也取决于工作,有些工作比起其他工作更需要掌握这个。但对于大多数工作 开始掌握一些基础则足以。
我建议这两个资源。
《Bayesian Methods for Hackers》
这是Cameron Davidsonpilonon写的。在github是免费的,有交互代码的例子。你可以结合notebook一起看,能够很好的理解。更多的是以计算机科学的视角解读,如何使用贝叶斯统计,以及如何考虑最终要处理的基础统计问题。
《Statistics for Hackers》
是很出色的演讲,可以通过这个链接看到相关幻灯片。主讲人是华盛顿大学的教授Jake VanderPlas。我强烈推荐。
5. 概率分布
你需要掌握基本概率分布。需要了解它们的表达和含义。理解它们是非常重要的,因为当你构建模型时需要了解一开始数据是如何分布的。
那么在完成数据科学家的第一步之后,该怎么面试找工作呢?关于数据科学存在什么误解和假象呢?之后我们将带来如何成为一名数据科学家之面试篇,敬请期待哦。
CDA字幕组召集令
CDA数据分析师旗下的CDA字幕组开始招募啦!
我们发掘了一批优质的数据分析视频,只要你有责任心有时间,有一定的英文翻译、听译能力,最重要的是热爱数据分析,那么就来加入我们吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22