
创新大数据时代网络舆情引导
大数据时代,网络舆情产生速度快,数据体量大,而且异常复杂。在新的网络舆情环境下,我国的网络舆情引导受到了前所未有的挑战,同时大数据也为网络舆情引导带来了新的机遇。在新形势下,应积极树立大数据理念,深入挖掘和合理利用大数据在网络舆情引导中的价值,创新网络舆情引导思维,抓住网络舆情的本质特征,探索网络舆情演变的内在规律,尽快建立起适应新形势的网络舆情引导机制。
分析海量信息
预测发展趋势
大数据使网络舆情预测成为现实。对已经出现的网络舆情予以监测,这是网络舆情引导的传统做法,也是以往网络舆情管理的起始。但是利用大数据技术,可以对网络舆情中具有关联的数据进行挖掘并加以分析,使敏感信息在网络上传播的初始阶段就被监测到。在此基础上通过模型对网络舆情变化趋势进行仿真,使网络舆情预测成为现实。
大数据使网络舆情分析更为全面。实现网络舆情预测,至关重要的是对数据的相关性进行全面分析。而在传统的网络舆情引导中,由于数据库的缺乏和计算分析能力有限,往往难以全面分析网络舆情,得出的结论也有失偏颇。大数据环境下,对网络舆情的分析由静态化向动态化转变,由片面化向立体化转变,由单一化向全局化转变。利用大数据技术解构海量信息,并对这些信息加以重构,对网络数据的相关性进行深度挖掘,可以全面科学地分析并预测网络舆情的发展趋势。
大数据使网络舆情实现量化管理。使网络舆情得以量化,是利用大数据对网络舆情进行科学预测的前提。网络舆情信息量巨大,而被挖掘出来的网络舆情信息需要进行量化,在此基础上再建立数学模型对信息数据进行计算和分析。数据的量化指的是数据是可计算的,一是在密切关注网民态度与情绪变化的同时对其采用量化指标加以标识,二是对网络言论所持某一观点的人群数量进行统计,三是透过网络信息文字内容来对网民互动的社会关系网络数量进行统计。
大数据使网络舆情相互关联。网络信息是网络背后的网民所传达出来的信息的集合,因而对网络数据进行研究,实质上是对由人所组成的社会网络进行研究。要实现网络舆情预测,离不开对网络舆情之间的关系进行关联这一尤为重要的大数据技术。在大数据时代,每个网络数据都被看作是一个节点,能够在舆情链上与其他关联数据不受限制地产生乘法效应,这种关联如同数据裂变,会扩大至全体网络数据,使舆情分析更为准确。
加强技术支撑
储备新型人才
重构大数据时代网络舆情引导战略。牢牢把握新契机,充分发挥大数据所具有的不可比拟的优势,重构大数据时代网络舆情引导战略。在大数据技术的帮助下不断提高网络舆情引导的预见性,进一步增强网络舆情引导的目的性。通过数据分析来了解网民群体的言论和心理特征,预测网络舆情变化趋势。加强政府网站建设,针对网络舆情特征有针对性地加以引导。挖掘数据信息,对数据的价值进行转化,使网络舆情引导的价值得以实现,使网络舆情引导具有更高的公信力。发挥主流媒体的作用,积极与社会公众进行沟通,使网络舆情引导及时有效。
积极创新网络舆情引导技术与手段。利用大数据有效地进行网络舆情引导离不开先进技术的支撑。一方面,掌握数据处理与分析等各种技术软件的应用,有效利用各种大数据技术平台实现网络舆情的分析、预测与引导。另一方面,应积极完善各项技术,创新对网络数据进行监测、挖掘、存储与分析的各种技术,对数据安全也应利用新技术进行维护。同时,大数据时代的网络环境更为复杂,网络舆情引导的难度加大,除了创新教育引导等手段,还需要通过法律等强制性手段进行规范。只有不断创新技术和手段,才能应对不断变化的网络舆情形势,保障网络舆情引导工作顺利开展。
大力培养网络舆情引导新型人才。在大数据时代,网络舆情引导急需高素质的新型复合型人才。为了满足当前大数据时代网络舆情引导对人才的迫切需求,可以采用招考等形式发掘数据分析等方面的高素质人才,采用培训和进修等形式提高现有专业人才的素质。要建立网络舆情引导人才培养的长效机制,对网络舆情引导人才需求进行系统分析,确定人才培养目标。与我国当前的学科专业人才培养体系相结合,培养既具有综合学科知识,又具有较高专业素养的网络舆情管理新型人才,加快大数据时代网络舆情引导人才队伍建设。
尽快完善网络舆情引导体制建设。规范大数据时代网络舆情引导工作,必然要求进一步完善网络舆情引导体制机制。尽快将网络舆情多元化管理的联动机制建立起来。制定大数据时代网络舆情引导战略规划,将产学研紧密地结合在一起,科学统筹政府、社会等多方力量,形成联动机制。网络舆情引导机构的设置应成为常态,并配备适当数量的专业人才,使网络舆情引导工作更加精细化。建立权责清晰的网络舆情引导责任机制,通过相关立法将网络舆情引导各部门的权利和义务予以明确。尽快完善相关保障机制,为大数据时代网络舆情引导提供有力的资源保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19