京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【每周一本书第 5 波】胸有成竹!数据分析的 SPSS 和 SAS EG 进阶(第2版)
SPSS 作为一个入门级数据分析软件,是每个从业者必会的。其可视化界面可以很好的展现数据分析的流程。但是SPSS 的功能毕竟有限,尤其在数据清洗和整理方面更是捉襟见肘,因此需要和SAS EG 结合使用。SAS EG 是一个以项目为导向的Windows 应用软件,它被用于实现对SAS 系统大多数分析能力的快速访问。它通常会被统计专家、业务分析员以及 SAS 程序员使用。
“CDA数据分析师系列丛书”依照数据分析师规范化学习体系而定。满足了CDA数据分析师等级认证学习的需要,也兼顾了大数据的热点动态。
从策划之初一直坚持以“读者需求”为主线,结合企业实际案例和业务场景来谈大数据思维和小数据分析。实现技术扎实,业务精通,策略接地气!
【每周一本书】又是一周,CDA数据分析师携手工业出版社将于每周三展开赠书活动,每周给各位读者提供3-5本赠书,希望带动各位读者能借此机会每周充一次电。(注:书籍将于10天内发放到中奖者手中。参与方式见下文)
划重点:C君只负责精选,剩下的要交给你们自己~
作者简介
经管之家(www.jg.com.cn):原人大经济论坛,于2003年成立,致力于推动经管学科的进步,传播优秀教育资源,目前已经发展成为国内最大的经济、管理、金融、统计类的在线教育和咨询网站,也是国内最活跃和最具影响力的经管类网络社区。
经管之家从2006年起在国内最早开展数据分析培训,累计培训学员数万人。在大数据的趋势背景下,创新“CDA数据分析师”品牌,致力于为社会各界数据分析爱好者提供最优质、最科学、最系统的数据分析教育。截至2016年3月已成功举办40多期系统培训,培训学员达3千余名;CDA认证考试已成功举办三届,报考人数上千人;中国数据分析师俱乐部(CDA CLUB),每周线下免费沙龙活动,已举力40多期,累积会员2千余名;中国数据分析师行业峰会(CDA Summit),一年两届,参会人数皆达2千余名,在大数据领域影响力超前。“CDA数据分析师”队伍在业界不断壮大,对数据分析人才产业起到了巨大的推动作用。
常国珍,北京大学商学博士,法学硕士。曾就职于亚信科技BOC部门、方正国际金融事业部、德勤管理咨询信息技术系统咨询部。SAS公司资深讲师,Oracle大数据讲师,多家金融信息部门和金融高科技公司数据挖掘技术顾问。从事征信数据集市与信用风险建模、客户价值提升等数据挖掘项目。擅长基于个体行为分析的价值发现和信用建模。研究方向为宏微观接合研究,兴趣点在于宏观环境变化对微 观主体行为的经济后果分析及价值投资。
赵仁乾,北京邮电大学管理科学与工程硕士,现就职于北京电信规划设计院,从事移动、联通集团及各省分公司市场、业务、财务规划,经济评价及运营咨询。重点研究方向包括离网用户挖掘、市场细分与精准营销、移动网络价值区域分析、潜在价值客户挖掘等。
曾珂,华中师范大学管理科学与工程硕士,现就职于经管之家CDA数据分析研究院,从事互联网、电子商务方向数据分析与数据挖掘的研究,CDA数据分析师的教学工作,研究方向为网络文本挖掘、电商 市场细分与客户细分、潜在价值客户挖掘、互联网大数据挖掘等。
内容提要
《胸有成竹!数据分析的SPSS和SAS EG进阶(第2版)》共5 章,涉及使用SPSS Statistics 和SAS EG 做商业数据分析的主要分析方法。其中,第1章的主要内容为数据分析方法概述;第2 章至第4 章的主要内容为横截面数据分析方法;第5 章的主要内容为时间序列分析方法。每章都根据所涉及的知识点的不同,选取了实用的案例,并为读者准备了相应的思考和练习题。
《胸有成竹!数据分析的SPSS和SAS EG进阶(第2版)》是一本面向商业数据分析初学者的教材,从具体的商业数据分析案例入手,使读者掌握数据分析的目的、理念、思路与分析步骤。本书力图淡化技术,对于方法的介绍也尽量避免涉及过多的数学内容,和高等数学相关的内容只在线形回归和主成分分析这两节中涉及到,而且都辅以图形作形象的展现。因此本书的读者只需要具有高中水平的数学基础即可。
上周获奖名单
参与方式
文末留言告诉C君,这本书吸引您的理由,获得精选,点(ren)赞(qi)数(gao)的前5名即可获得本书
截止时间9月25日中午12点
(为确保赠书活动的公平公开性,让更多人能参与到每周一本书中。赠书活动参与者每月有且仅有一次获奖机会,有获奖记录的参与者赠书将自动转赠其他参与者)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27