京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据已成为重要战略性资源
信息技术广泛应用于经济社会发展领域,产生了十分庞大的各类数据,人们形象地称为大数据。狭义的大数据是指以数量巨大、来源分散、格式多样、应用价值高为主要特征的数据集合。而广义的大数据除了数据集合的含义外,还包括对这类数据进行采集、存储和关联分析,以及从中发现新知识、创造新价值、提升新动能的新技术和新业态。因而,大数据所代表的不仅仅是重要的技术变革,而且是战略性经济资源,大数据服务业已成为前景广阔的新技术产业。
大数据的价值在于可提供尽可能多的详尽信息并对信息进行有效处理。通过全面、精确、即时的大数据技术,提升整体数据分析能力,推动大数据开放共享,促进资源整合,发现其中所蕴含的价值。大数据带来的科技革命和经济革命,将极大地影响经济社会发展。以数据流引领技术流、人才流、资金流、物资流,推动生产要素的集约化整合、协作化开发、高效化利用、网络化共享,可形成新的资源配置模式,改变传统的生产方式和经济运行机制,提升经济运行效率和水平。
大数据及其解析能力已成为企业核心竞争力,预计到2050年全球将有超过80%的企业依赖各种平台生存,平台型企业将占据全球价值链的高端。大数据时代,企业只有融入互联网生态圈,充分运用大数据有效整合资源,才能把握发展主动权,赢得市场竞争优势。
大数据可以突破传统资源增长的极限
传统资源是有限的,煤炭可以再开采160年,石油仅能再开采40年。基于传统资源的有限性,经济发展也是有极限的。但大数据作为新的资源,其开发和增长却是无限的。由于大数据作为新的要素加入,改变了传统要素格局,新知识和新技术替代资本成为经济发展的主导因素,同时也为传统要素带来巨大的附加值和增长空间。例如,以往电力的有效利用率为60%—70%,而另外的30%—40%由于不合理的规划或调配而浪费流失了,如果采用大数据分析,采用人工智能合理调配,这30%—40%节能空间将大有作为。美国通用电气公司预测,“利用传感器、大数据、人工智能等技术,在商业航空领域未来15年节约1%的燃料就可节约300亿美元;全球所有天然气火力发电厂的效率提高1%,就能节约价值660亿美元的燃料;全球医疗效率提高1%,就可节约超过630亿美元的医疗成本”。
由于大数据资产可以复制、递增、共享,以其效益递增可以弥补传统资源效益递减,这样就改变了以往资源的投入、组合和利用方式,加之依托互联网延展了资源配置平台,使得经济发展中的动力机制、要素依赖、创新驱动、思维模式、企业组织架构等均发生了明显的变化。以往经济增长方式高成本、低效益,效益呈递减趋势。在信息时代,大数据成为重要的生产要素,经济发展方式是低成本、高效率,而且效益呈递增趋势。而且,这种发展是智慧的、绿色的、共享的可持续发展,是发展方式的真正转变。
积极开发大数据资源,筑牢产业发展根基
为用好大数据资源,应大力发展大数据及其产业,围绕数据收集、储存、处理、应用等环节,加快计量、标准化、检验检测和认证认可等大数据产业基础建设,加速大数据开发应用。大力开发大型通用海量数据存储与管理、大数据处理与开发等软件产品,着力开发海量数据存储设备、大数据一体机等硬件产品,带动芯片、操作系统等技术产品发展,构筑健全的大数据产业体系。提供与重点行业领域业务流程及数据应用需求深度融合的大数据解决方案,提升相关产业大数据资源的采集获取和分析运用能力,带动技术研发创新、管理方式变革、商业模式重建和产业价值链重构,推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链各环节的应用。大力发展便捷服务、用户体验、个性化服务、数据价值挖掘等新型大数据服务业,提升生产智能化、经营网络化、管理高效化、服务便捷化能力和水平。
加快推动数据资源开放共享和开发应用的同时,必须建立大数据安全保障体系,构筑适应大数据发展的法规制度,健全大数据时代信息安全新秩序。从政策上关注大数据战略性和基础性重点领域,加快相关法律法规的出台步伐,就数据所有权和数据隐私权制定标准或法规,依法保护公民和国家的大数据安全。明确大数据采集、开发、应用、共享等各环节网络安全保障的范围边界、责任主体和具体要求,做好大数据平台及服务商的可靠性及安全性评估、应用安全评测、监测预警和风险评价。支持国产大数据技术发展与平台建设,采用安全信任产品和服务,积极扶持和引导我国骨干企业加大研发力度,努力突破核心技术,提升基础设施关键设备自主可控水平和信息安全防御能力。
我国是全球网民最多的网络大国,互联网、移动互联网用户规模全球第一,拥有丰富的数据资源和市场优势,大数据部分关键技术研发已经取得突破。要树立新发展理念,充分运用我国数据规模优势,实现数据质量、规模和开发应用水平同步提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22