
Python实现将数据库一键导出为Excel表格的实例
下面小编就为大家带来一篇Python实现将数据库一键导出为Excel表格的实例。小编觉得挺不错的,现在就分享给大家,
数据库数据导出为excel表格,也可以说是一个很常用的功能了。毕竟不是任何人都懂数据库操作语句的。
下面先来看看完成的效果吧。
数据源
导出结果
依赖
由于是Python实现的,所以需要有Python环境的支持
Python2.7.11
我的Python环境是2.7.11。虽然你用的可能是3.5版本,但是思想是一致的。
xlwt
pip install xlwt
MySQLdb
pip install MySQLdb
如果上述方式不成功的话,可以到sourceforge官网上去下载windows上的msi版本或者使用源码自行编译。
数据库相关
本次试验,数据库相关的其实也就是如何使用Python操作数据库而已,知识点也很少,下述为我们本次用到的一些简单的语句。
连接
conn = MySQLdb.connect(host='localhost',user='root',passwd='mysql',db='test',charset='utf8')
这里值得我们一提的就是最后一个参数的使用,不然从数据库中取出的数据就会使乱码。关于乱码问题,如果还有不明白的地方,不妨看下这篇文章 浅谈编码,解码,乱码的问题
获取字段信息
fields = cursor.description
至于cursor,是我们操作数据库的核心。游标的特点就是一旦遍历过该条数据,便不可返回。但是我们也可以手动的改变其位置。
cursor.scroll(0,mode='absolute')来重置游标的位置
获取数据
获取数据简直更是轻而易举,但是我们必须在心里明白,数据项是一个类似于二维数组的存在。我们获取每一个cell项的时候应该注意。
results = cursor.fetchall()
Excel基础
同样,这里讲解的也是如何使用Python来操作excel数据。
workbook
工作薄的概念我们必须要明确,其是我们工作的基础。与下文的sheet相对应,workbook是sheet赖以生存的载体。
workbook = xlwt.Workbook()
sheet
我们所有的操作,都是在sheet上进行的。
sheet = workbook.add_sheet(‘table_message',cell_overwrite_ok=True)
对于workbook 和sheet,如果对此有点模糊。不妨这样进行假设。
日常生活中记账的时候,我们都会有一个账本,这就是workbook。而我们记账则是记录在一张张的表格上面,这些表格就是我们看到的sheet。一个账本上可以有很多个表格,也可以只是一个表格。这样就很容易理解了吧。 :-)
案例
下面看一个小案例。
# coding:utf8
import sys
reload(sys)
sys.setdefaultencoding('utf8')
# __author__ = '郭 璞'
# __date__ = '2016/8/20'
# __Desc__ = 从数据库中导出数据到excel数据表中
import xlwt
import MySQLdb
conn = MySQLdb.connect('localhost','root','mysql','test',charset='utf8')
cursor = conn.cursor()
count = cursor.execute('select * from message')
print count
# 重置游标的位置
cursor.scroll(0,mode='absolute')
# 搜取所有结果
results = cursor.fetchall()
# 获取MYSQL里面的数据字段名称
fields = cursor.description
workbook = xlwt.Workbook()
sheet = workbook.add_sheet('table_message',cell_overwrite_ok=True)
# 写上字段信息
for field in range(0,len(fields)):
sheet.write(0,field,fields[field][0])
# 获取并写入数据段信息
row = 1
col = 0
for row in range(1,len(results)+1):
for col in range(0,len(fields)):
sheet.write(row,col,u'%s'%results[row-1][col])
workbook.save(r'./readout.xlsx')
封装
为了使用上的方便,现将其封装成一个容易调用的函数。
封装之后
# coding:utf8
import sys
reload(sys)
sys.setdefaultencoding('utf8')
# __author__ = '郭 璞'
# __date__ = '2016/8/20'
# __Desc__ = 从数据库中导出数据到excel数据表中
import xlwt
import MySQLdb
def export(host,user,password,dbname,table_name,outputpath):
conn = MySQLdb.connect(host,user,password,dbname,charset='utf8')
cursor = conn.cursor()
count = cursor.execute('select * from '+table_name)
print count
# 重置游标的位置
cursor.scroll(0,mode='absolute')
# 搜取所有结果
results = cursor.fetchall()
# 获取MYSQL里面的数据字段名称
fields = cursor.description
workbook = xlwt.Workbook()
sheet = workbook.add_sheet('table_'+table_name,cell_overwrite_ok=True)
# 写上字段信息
for field in range(0,len(fields)):
sheet.write(0,field,fields[field][0])
# 获取并写入数据段信息
row = 1
col = 0
for row in range(1,len(results)+1):
for col in range(0,len(fields)):
sheet.write(row,col,u'%s'%results[row-1][col])
workbook.save(outputpath)
# 结果测试
if __name__ == "__main__":
export('localhost','root','mysql','test','datetest',r'datetest.xlsx')
测试结果
id name date
1 dlut 2016-07-06
2 清华大学 2016-07-03
3 北京大学 2016-07-28
4 Mark 2016-08-20
5 Tom 2016-08-19
6 Jane 2016-08-21
总结
回顾一下,本次试验用到了哪些知识点。
•Python简易操作数据库
•Python简易操作Excel
•数据库取出数据乱码问题解决之添加charset=utf-8
•以二维数组的角度来处理获取到的结果集。
以上这篇Python实现将数据库一键导出为Excel表格的实例就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02