京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析Python中的赋值和深浅拷贝
Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果。接下来通过本文给大家分享Python中的赋值和深浅拷贝.
python中,A object = B object 是一种赋值操作,赋的值不是一个对象在内存中的空间,而只是这个对象在内存中的位置 。
此时当B对象里面的内容发生更改的时候,A对象也自然而然的会跟着更改。
name = ["root","admin"]
cp_name = name # 对cp_name进行赋值操作
# 对name列表进行插入
name.append('root_temp')
print(name,cp_name) # ['root', 'admin', 'root_temp'] ['root', 'admin', 'root_temp']
print(id(name),id(cp_name)) # 23991960 23991960
而想要进行浅拷贝或者深拷贝,就需要引入copy模块 。
首先来说下浅拷贝,当进行浅拷贝时,使用copy.copy()方法。
import copy
name = ["root","admin"]
# 进行浅拷贝操作
cp_name = copy.copy(name)
# 查看cp_name,name
print(name,cp_name) # ['root', 'admin'] ['root', 'admin'] 拷贝成功
#查看地址
print(id(name),id(cp_name)) # 21146920 21147160 内存地址并不相同
# 尝试对name进行更改
name.append('root_temp')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin'] 内容并没有更改
A = copy.copy(B) 此时A对象相当于把B对象中的内容给完成的拷贝了一份,存储在了一份新的内存地址当中。
其中有一点需要注意,如下:
import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.copy(name)
# 查看两个对象的地址
print(id(name),id(cp_name)) # 24358504 24428952 二者的地址并不相同
# 对name 进行更改
name.append('test')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] cp_name并未更改
# 在来对name中的列表对象进行更改
name[2].append('ttttt')
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp', 'ttttt']] 发现cp_name内容发生了变化
在上面的代码中,通过copy.copy()方法把name对象浅拷贝给了cp_name,此时二者的内容相同,但是地址不同,说明通过浅拷贝后,cp_name相当于重新开辟了一块内存空间用来存储拷贝过来的内容。所以说,当name.append()第一次插入值的时候,cp_name对象没有变化,因为cp_name和name 处于两个不同的内存空间,是独立的。
而浅拷贝的问题在于,只能够拷贝第一层的内容,至于说第二层以及第三层或者第n层,对于浅拷贝来说都是无能为力的,只能简单的拷贝一份内存地址。
所以说,对于name 这个对象中,列表第一层发生更改,是不会影响cp_name的,而一旦更改了第二层或者第n层的内容,cp_name都会被影响,因为此时的cp_name对象里面子列表是与name的子列表共享相同的内存空间。
import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.deepcopy(name)
# 查看二者的id
print(id(name),id(cp_name)) # 29863528 29933976 地址不同,说明开辟了处于两块不同的空间
# 对name 第一层以及第二层进行更改
name.append('t1')
name[2].append('t2')
# 查看cp_name是否内容发生变化
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] 内容并未发生更改
此时,cp_name对象并不会被name所影响,无论name对象的第一层列表还是第n层的更改和变化,都不会影响cp_name,因为此时通过深层拷贝,两个对象已经完全的处于两个不同的独立内存空间,而这也就是深层拷贝。
总结
以上所述是小编给大家介绍的Python中的赋值和深浅拷贝
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22