
浅析Python中的赋值和深浅拷贝
Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果。接下来通过本文给大家分享Python中的赋值和深浅拷贝.
python中,A object = B object 是一种赋值操作,赋的值不是一个对象在内存中的空间,而只是这个对象在内存中的位置 。
此时当B对象里面的内容发生更改的时候,A对象也自然而然的会跟着更改。
name = ["root","admin"]
cp_name = name # 对cp_name进行赋值操作
# 对name列表进行插入
name.append('root_temp')
print(name,cp_name) # ['root', 'admin', 'root_temp'] ['root', 'admin', 'root_temp']
print(id(name),id(cp_name)) # 23991960 23991960
而想要进行浅拷贝或者深拷贝,就需要引入copy模块 。
首先来说下浅拷贝,当进行浅拷贝时,使用copy.copy()方法。
import copy
name = ["root","admin"]
# 进行浅拷贝操作
cp_name = copy.copy(name)
# 查看cp_name,name
print(name,cp_name) # ['root', 'admin'] ['root', 'admin'] 拷贝成功
#查看地址
print(id(name),id(cp_name)) # 21146920 21147160 内存地址并不相同
# 尝试对name进行更改
name.append('root_temp')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin'] 内容并没有更改
A = copy.copy(B) 此时A对象相当于把B对象中的内容给完成的拷贝了一份,存储在了一份新的内存地址当中。
其中有一点需要注意,如下:
import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.copy(name)
# 查看两个对象的地址
print(id(name),id(cp_name)) # 24358504 24428952 二者的地址并不相同
# 对name 进行更改
name.append('test')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] cp_name并未更改
# 在来对name中的列表对象进行更改
name[2].append('ttttt')
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp', 'ttttt']] 发现cp_name内容发生了变化
在上面的代码中,通过copy.copy()方法把name对象浅拷贝给了cp_name,此时二者的内容相同,但是地址不同,说明通过浅拷贝后,cp_name相当于重新开辟了一块内存空间用来存储拷贝过来的内容。所以说,当name.append()第一次插入值的时候,cp_name对象没有变化,因为cp_name和name 处于两个不同的内存空间,是独立的。
而浅拷贝的问题在于,只能够拷贝第一层的内容,至于说第二层以及第三层或者第n层,对于浅拷贝来说都是无能为力的,只能简单的拷贝一份内存地址。
所以说,对于name 这个对象中,列表第一层发生更改,是不会影响cp_name的,而一旦更改了第二层或者第n层的内容,cp_name都会被影响,因为此时的cp_name对象里面子列表是与name的子列表共享相同的内存空间。
import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.deepcopy(name)
# 查看二者的id
print(id(name),id(cp_name)) # 29863528 29933976 地址不同,说明开辟了处于两块不同的空间
# 对name 第一层以及第二层进行更改
name.append('t1')
name[2].append('t2')
# 查看cp_name是否内容发生变化
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] 内容并未发生更改
此时,cp_name对象并不会被name所影响,无论name对象的第一层列表还是第n层的更改和变化,都不会影响cp_name,因为此时通过深层拷贝,两个对象已经完全的处于两个不同的独立内存空间,而这也就是深层拷贝。
总结
以上所述是小编给大家介绍的Python中的赋值和深浅拷贝
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18