京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:含时间依存性自变量的Cox回归分析
在介绍Cox回归模型时,我们提到过Cox回归模型有一个基本假设,就是纳入模型中的自变量不具有时间依存性,也就是自变量对风险函数的影响不随时间的变化而变化,如果违反这条假设,就需要将时间的影响也纳入模型一起考量,这就是具有时间依存变量的Cox回归模型。
模型原理
在进行生存分析时,有些自变量对风险函数(事件发生概率)的影响会随时间的变化而变化,这种现象在医学领域其实非常常见。例如,二次世界大战以后,很多学者研究美国投放在日本广岛和长崎的两颗原子弹的核辐射对日本妇女乳腺癌发生率的影响,其中人们接触到的核辐射量(自变量)会随时间的推移逐渐减低,这个自变量就不符合Cox回归模型的假设,此时应该使用考量时间效应的Cox回归模型。
在上一篇的Cox回归模型文章中,我们已经知道是否术中放疗对风险函数(术后患者的生存时间分布)有显著性影响,术中放疗的患者的平均生命时间比没有术中放疗的患者更长。Cox回归模型又称为比例风险模型,因为它对自变量有假设,要求自变量对风险函数的影响不随时间变化而变化。
在Cox回归模型中,可以通过图形来主观判断自变量是否符合上面的假设,如下图所示,在log minus log图形中,两条生存曲线是几乎平行的,可以帮助分析者判断是否术中放疗对风险函数的影响是符合恒定比例假设的。
先回顾一下Cox回归模型:
具有时间依存自变量的Cox回归模型可以分成两种:第一种是自变量的取值不随时间变化,只是同样的自变量取值对生存时间分布的影响效应变化了,这种自变量称为外在时间依存自变量。模型公式可以表示为:
第二种是情况是自变量的取值随时间的变化而变化,从而使得自变量对生存时间分布的影响发生变化,也就是说该自变量是时间t的因变量,这样的自变量称为内在时间依存自变量,例如文章开头提到的核辐射例子。模型可以表示为:
采用含时间依存自变量Cox回归模型判断自变量是否具有时间依存性,通过检验上面模型的回归系数与0是否有显著性差异,如果回归系数与0有显著性差异,说明该自变量具有时间依存性,反之则没有时间依存性,可以直接使用Cox回归模型。
在实际生活中,影响风险函数的自变量经常是会随着时间的改变而改变的,当数据分析者怀疑自变量具有时间依赖性时,那么就意味着这个自变量对风险函数的影响也会随时间的改变而改变,这时可以用含时间依存自变量的Cox回归模型来分析。
案例分析
在医学领域,普遍认为某种疾病的死亡率会受到害怕、压抑和焦虑等不良心理的影响。众所周知,在器官移植领域,需要心脏移植的病人必须等到合适的心脏提供者出现才能进入心脏移植程序。如果没有合适的心脏资源,就需要无限期等待。在人们的主观意识中,合适的心脏资源出现之前和出现之后,等待心脏移植的病人状态是完全不一样的,那么这种心理变化是否会影响生存时间分布呢?美国斯坦福大学曾经针对这个普遍认识进行了一项心脏移植对延长生存时间的研究。数据如下图所示:
分析思路
等待时间表示在合适的心脏资源出现前,病人的等待时间。如果某个需要心脏移植的病人一直没有等到合适的心脏资源,那么将等待时间设置为9999,其它等到心脏资源的病人,其等待时间按实际周数填写。
分析步骤
1、选择菜单【分析】-【生存分析】-【Cox依时协变量】,在跳出的菜单中按照下图操作。T_COV_表示构建的随时间变化的新自变量,这个自变量是通过将原来的自变量X(是否出现合适心脏资源)构建成随时间变化的新自变量。
很明显,是否出现心脏资源与等待时间是相关的,那么新自变量X(t)的构建公式为:(T_<等待时间|等待时间=9999)*0+(T_>=等待时间)*1,新自变量可以表示成下面的形式:
2、点击【模型】按钮,按照下图进行操作,和上一篇文章Cox回归模型的操作过程是完全一致的。
3、点击确定,输出结果。
结果解释
1、模型拟合结果:从结果可知,没有纳入自变量时,模型的-2对数似然值为157.061,纳入T_COV_自变量后,模型-2对数似然值为157.051,仅仅减少了0.01,显著性0.919,大于0.05,说明该自变量对于模型没有贡献。
2、回归系数结果;根据结果可知,新构建的时间依存性自变量X(t)的回归系数估计值为-0.064,显著性为0. 919,也就是说回归系数与0没有显著性差异。该结果说明合适心脏资源出现与否对病人的生存时间分布没有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22