京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据世代:移动时代的市场营销
在互联网上购物时,您会收到商家特别推荐商品链接,这些商品还真是您喜欢的。
买完东西之后,您晃晃手机就能付款,同时还攒了好多积分。
是的,现在的购物已不同以往,市场营销趋势也发生了变化。互联网和移动设备支持的数字技术,重塑了营销环境——
中国手机用户总数在2013年首次超过10亿;
截止到2014年2月,智能手机在智能终端市场的份额已经高达83.1%;预计2014年全年智能手机将占到智能终端比例的82.6%;
国内上网速度加快、无线资费下调;
GPS 助力实现全新的定位服务;
电子邮件、通知弹窗、横幅广告和按点击付费广告为营销人员提供了更多与客户交流互动的途径。
不过对营销人员而言,麻烦在于如何才能够驾驭大数据和复杂的营销渠道,有效地开展营销?
1.寻找能够帮助您的数据。
在开始寻找最佳外部数据之前,先理清您的自有数据。当您让自有数据和外部数据相互关联时,就会发现大量的协同效应。
截止到2013年底微信在国内外的月活跃用户数量已经超过了2.7亿;
截止到2013年12月中旬,京东网站注册用户突破1.4亿;
截止到2014年3月,支付宝每天的移动支付笔数已经超过2500万笔;
……
如果再把购买的数据和来自零售商合作伙伴的数据考虑在内,各个企业拥有的数据量是极其可观的。
2.整合数据,创造360度视图。
“微博、微信的快速发展所带来的非结构化语言记录、音频、图片和视频等数据加快了电信行业数据量的增长速度,海量的非结构化数据带来的并不仅仅是存储、传输的问题,做好海量非结构化数据分析来更好地服务客户、提高业务效率已经成为全球运营商当前最为紧迫的问题。”——《中国电信行业大数据应用市场研究白皮书》赛迪顾问
3.引入非传统数据源。
来自数字化营销渠道的数据流可能是有影响力的新洞见来源,如网站分析和文本分析。
”通过用分析软件获得呼叫中心的通讯信息、寻找流行关键词、组织信息以及将信息导入模型进行进一步分析——这样做对于增进我们对客户的了解有极大的帮助。“某移动通信公司客户营销总监这样认为。
当然还要考虑社交媒体数据中隐藏的价值。您的客户在微博、微信、人人网、豆瓣等社交网站上对您的品牌评头论足,或褒或贬。这使社交媒体成为有关您的客户、您的公司及竞争对手的一个潜在情报宝库。
4.通过数据分析找到最佳销售方案。
数据对您理解不同需求、在适当的时间向有关客户提供适宜的宣传信息、适宜的购物建议、适宜的通信内容、适宜的编辑内容具有至关重要的意义。
您想在条件合适时对客户进行交叉销售和追加销售,希望您的客户有针对性地了解所有的营销活动——首先必须全面整合相关数据,拥有统一的客户视图。其次是能够了解该数据所体现的模式,了解客户动态,进而预测分析客户需求。
两点建议
1.加强监管审查意识并防止客户信息外泄
”银行在如何管理数据方面受到严格的监管,我们必须建立非常强的监管审查意识。除此之外,我们还要了解客户的需求和想法,从营销的角度理解我们能够做什么和不能做什么,并确保客户信息处于安全的状态。“某信用卡中心的营销高管表示。
2.为支付革命做好准备
再过几年,我们大多数人购物时可能将不再使用现金或者银行卡了。哪种电子支付方式将占据主导地位?最终将由消费者决定。请密切关注趋势走向并确保您为即将兴盛的支付方式做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03