
大数据世代:移动时代的市场营销
在互联网上购物时,您会收到商家特别推荐商品链接,这些商品还真是您喜欢的。
买完东西之后,您晃晃手机就能付款,同时还攒了好多积分。
是的,现在的购物已不同以往,市场营销趋势也发生了变化。互联网和移动设备支持的数字技术,重塑了营销环境——
中国手机用户总数在2013年首次超过10亿;
截止到2014年2月,智能手机在智能终端市场的份额已经高达83.1%;预计2014年全年智能手机将占到智能终端比例的82.6%;
国内上网速度加快、无线资费下调;
GPS 助力实现全新的定位服务;
电子邮件、通知弹窗、横幅广告和按点击付费广告为营销人员提供了更多与客户交流互动的途径。
不过对营销人员而言,麻烦在于如何才能够驾驭大数据和复杂的营销渠道,有效地开展营销?
1.寻找能够帮助您的数据。
在开始寻找最佳外部数据之前,先理清您的自有数据。当您让自有数据和外部数据相互关联时,就会发现大量的协同效应。
截止到2013年底微信在国内外的月活跃用户数量已经超过了2.7亿;
截止到2013年12月中旬,京东网站注册用户突破1.4亿;
截止到2014年3月,支付宝每天的移动支付笔数已经超过2500万笔;
……
如果再把购买的数据和来自零售商合作伙伴的数据考虑在内,各个企业拥有的数据量是极其可观的。
2.整合数据,创造360度视图。
“微博、微信的快速发展所带来的非结构化语言记录、音频、图片和视频等数据加快了电信行业数据量的增长速度,海量的非结构化数据带来的并不仅仅是存储、传输的问题,做好海量非结构化数据分析来更好地服务客户、提高业务效率已经成为全球运营商当前最为紧迫的问题。”——《中国电信行业大数据应用市场研究白皮书》赛迪顾问
3.引入非传统数据源。
来自数字化营销渠道的数据流可能是有影响力的新洞见来源,如网站分析和文本分析。
”通过用分析软件获得呼叫中心的通讯信息、寻找流行关键词、组织信息以及将信息导入模型进行进一步分析——这样做对于增进我们对客户的了解有极大的帮助。“某移动通信公司客户营销总监这样认为。
当然还要考虑社交媒体数据中隐藏的价值。您的客户在微博、微信、人人网、豆瓣等社交网站上对您的品牌评头论足,或褒或贬。这使社交媒体成为有关您的客户、您的公司及竞争对手的一个潜在情报宝库。
4.通过数据分析找到最佳销售方案。
数据对您理解不同需求、在适当的时间向有关客户提供适宜的宣传信息、适宜的购物建议、适宜的通信内容、适宜的编辑内容具有至关重要的意义。
您想在条件合适时对客户进行交叉销售和追加销售,希望您的客户有针对性地了解所有的营销活动——首先必须全面整合相关数据,拥有统一的客户视图。其次是能够了解该数据所体现的模式,了解客户动态,进而预测分析客户需求。
两点建议
1.加强监管审查意识并防止客户信息外泄
”银行在如何管理数据方面受到严格的监管,我们必须建立非常强的监管审查意识。除此之外,我们还要了解客户的需求和想法,从营销的角度理解我们能够做什么和不能做什么,并确保客户信息处于安全的状态。“某信用卡中心的营销高管表示。
2.为支付革命做好准备
再过几年,我们大多数人购物时可能将不再使用现金或者银行卡了。哪种电子支付方式将占据主导地位?最终将由消费者决定。请密切关注趋势走向并确保您为即将兴盛的支付方式做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07