京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用python求相邻数的方法示例
本文主要给大家介绍了关于利用python求相邻数的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍:
什么是相邻数?
比如5,相邻数为4和6,和5相差1的数,连续相差为1的一组数
需求:
遍历inputList 所有数字,取出所有数字,判断是否有相邻数, 不相邻数字 和 相邻数字 都以 “数组”形式 添加到 outputList 中, 并且 每个“数组” 里 第一位 递减 补全两位数,末位 递增 补全两位数, 每一个数不能小于0, 不能大于 400
( 提示: 在inputList 中 "12,13" 是相邻的数字,视为一组, 需要以[10, 11, 12, 13, 14, 15] 数组形式添加到outputList 中,而 “3”没有相邻的数,也视为一组,需要以[1, 2, 3, 4, 5]数组形式添加到outputList中 )

输入:
inputList = [0, 3, 5, 6, 7, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 25, 27, 29, 30, 32, 33, 36, 39, 40, 43, 44, 46, 47, 48, 53, 54, 57, 58, 60, 62, 64, 65, 66, 67, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 89, 95, 96, 97, 98, 103, 104, 107, 108, 110, 111, 114, 116, 117, 118, 120, 121, 122, 124, 127, 132, 135, 137, 138, 139, 140, 145, 146, 148, 149, 150, 151, 155, 156, 160, 161, 166, 167, 170, 171, 172, 175, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193, 195, 196, 198, 202, 205, 208, 210, 211, 213, 214, 215, 217, 221, 226, 227, 228, 233, 234, 235, 240, 241, 246, 247, 249, 255, 257, 258, 261, 262, 263, 267, 268, 269, 270, 271, 272, 275, 278, 280, 282, 283, 284, 286, 287, 289, 291, 292, 295, 296, 298, 300, 302, 303, 304, 305, 306, 310, 315, 317, 319, 320, 321, 322, 323, 324, 325, 326, 328, 331, 336, 339, 341, 342, 344, 346, 349, 354, 355, 356, 362, 363, 365, 366, 367, 368, 371, 374, 376, 378, 382, 383, 388, 390, 393, 396, 399]
输出 :
outputList = [[0, 1, 2] , [1, 2, 3, 4, 5], [3, 4, 5, 6, 7, 8, 9], [7, 8, 9, 10, 11],[10, 11, 12, 13, 14, 15] , ........此处省略]
那,如何解决这个问题?
1. 设置一个值,指向index=0, start_index = 0
2. 初始化一个中间列表median = [ ] , 一个保存结果列表 result_l = [ ]
3. for循环开始, start_index 指向每一个相邻数的开头
4. 通过索引指向的值和索引后指向的值进行差值比较,步长不为1的,start_index移动到这个值上
5. 循环往复,获得相邻列表
6. 通过map函数,对每一个相邻列表进行前后各插入两个相邻数
7. 通过列表解析, 剔除不满足条件的相邻数
示例代码
#!/usr/bin/python3
__author__ = 'beimenchuixue'
__blog__ = 'http://www.cnblogs.com/2bjiujiu/'
def go_cha_ru(new_l):
"""往列表中前后个插入两个相邻数,通过列表解析去除小于0的和大于400的数"""
new_l.insert(0, new_l[0] - 1)
new_l.insert(0, new_l[0] - 1)
new_l.append(new_l[len(new_l) - 1] + 1)
new_l.append(new_l[len(new_l) - 1] + 1)
return [i for i in new_l if 0 <= i <= 400]
def go_xiang_lin(raw_l):
"""获取相邻数"""
start_index = 0
result_l = []
median = []
# 索引从start_index起,到最后
for raw_index in range(len(raw_l)):
# 判断是否for循环到指定位置
if start_index == raw_index:
# 初始移动位置参数
index = 0
while True:
# 指针指向的起始值
start_value = raw_l[start_index]
# 如果指针指向最后一个位置,开始值=最后一个值
if start_index == len(raw_l)-1:
end_value = start_value
else:
# 最后一个值 = 初始值 + 位置参数值
end_value = raw_l[start_index + index]
# 通过初始值 + 位置参数值 是否等于 最后一个值,判断是否为相邻数,如果是,添加到中间列表
if start_value + index == end_value:
median.append(end_value)
# 位置参数 + 1
index += 1
else:
# 如果不是,初始指针指向 移动位置参数个单位
start_index += index
# 把每主相邻数添加到结果列表
result_l.append(median)
median = []
break
# 通过高阶函数,对结果集中每个相邻数列表进行插值操作
return map(go_cha_ru, result_l)
if __name__ == '__main__':
input_list = [0, 3, 5, 6, 7, 9,
12, 13, 15, 16, 17, 19, 20, 21, 22, 25,
27, 29, 30, 32, 33, 36, 39, 40, 43, 44, 46, 47, 48, 53, 54,
57, 58, 60, 62, 64, 65, 66, 67, 72, 74, 75, 76, 77, 78, 80, 82,
84, 85, 86, 89, 95, 96, 97, 98, 103, 104, 107, 108, 110, 111, 114,
116, 117, 118, 120, 121, 122, 124, 127, 132, 135, 137, 138, 139, 140,
145, 146, 148, 149, 150, 151, 155, 156, 160, 161, 166, 167, 170, 171,
172, 175, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193,
195, 196, 198, 202, 205, 208, 210, 211, 213, 214, 215, 217, 221, 226,
227, 228, 233, 234, 235, 240, 241, 246, 247, 249, 255, 257, 258, 261,
262, 263, 267, 268, 269, 270, 271, 272, 275, 278, 280, 282, 283, 284,
286, 287, 289, 291, 292, 295, 296, 298, 300, 302, 303, 304, 305, 306,
310, 315, 317, 319, 320, 321, 322, 323, 324, 325, 326, 328, 331, 336,
339, 341, 342, 344, 346, 349, 354, 355, 356, 362, 363, 365, 366, 367,
368, 371, 374, 376, 378, 382, 383, 388, 390, 393, 396, 399]
# 结果
output_list = list(go_xiang_lin(input_list))
print(output_list)
总结
以上就是这篇文章的全部内容了.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09