
python中类和实例如何绑定属性与方法示例详解
python类与实例的方法的调用中觉得云里雾里,思考之后将自己的想法记录下,一来加深自己理解,巩固自己记忆,而来帮助一些想要学习python的朋友理解这门抽象的语言,由于Python是动态语言,类以及根据类创建的实例可以任意绑定属性以及方法,下面分别介绍。
1.类绑定属性
类绑定属性可以直接在class中定义属性,这种属性是类属。
这个属性虽然归类所有,但类的所有实例都可以访问到。
class Student(object):
name = 'Student'
s = Student() # 创建实例s
print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
print(Student.name) # 打印类的name属性
Student
Student
此时如果修改s.name的值,会有如下结果:
s.name = 'xiaoming' # 给实例绑定name属性
print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
xiaoming
Student
接下来删除s.name属性:
del s.name # 如果删除实例的name属性
print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student
由此可见相同名称的实例属性将覆盖类属性,删除实例属性后,实例将向上访问到类属性。
2.实例绑定属性
实例绑定属性的方法有两种,一是通过类的self变量,二是直接给实例赋值。
class Student(object):
def __init__(self, name):
self.name = name
s = Student('Bob')#方法一 通过类的self变量绑定属性
s.score = 90#方法二 直接赋值
3.类绑定方法
类绑定方法分两种,第一种形如类绑定属性,例程如下:
Class Student(object):
pass
a=Student()#创建实例
def set_score(self,score):
self.score=score
Student.set_score=set_score#类绑定方法
a.set_score(99)#调用方法
a.score
99#输出
第二种是使用MethodType给类绑定方法:
Class Student(object):
pass
a=Student()#创建实例
def set_score(self,score):
self.score=score
from types import MethodType
Student.set_score = MethodType(set_score, Student)
a.set_score(99)#调用方法
a.score
99#输出
这种方法有一个需要注意的地方,如果继续创建一个实例b:
b=Student()
b.set_score(60)
b.score
a.score
60
会发现a的属性score值也变成60。这里个人的理解是这里的score并不是同上一种方法一样直接绑定在类,而是类似于像列表一样的共享引用的关系,
即实例a和b都引用这个score作为自己的属性,而当其被修改时,所有引用它的实例的对应属性都将一同发生变化。
4.实例绑定方法
第一种通过给类绑定方法,可以使实例调用,如上所示。
第二种是使用MethodType给单个实例绑定方法。
Class Student(object):
pass
a=Student()#创建实例
def set_score(self,score):
self.score=score
from types import MethodType
a.set_score = MethodType(set_score, a)
a.set_score(99)#调用方法
a.score
99#输出
注意这种方式只对实例a起作用,如果需要类Studnet的所有实例均可调用,那么直接给类Student绑定方法即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29