
解读大数据行业在2017年的新发展
随着科技的进步,大数据从科学前沿逐渐深入到各行业。2017年中国的大数据行业有什么新动态?大数据行业整体市场规模如何?大数据行业前景如何?如何助力企业发展?今日的比格数据,我们来一起解读大数据行业在2017年的新发展。
大数据行业整体市场规模及预测
整体来看,2017 年中国大数据行业的发展依然呈稳步上升趋势,市场规模达到了 234 亿元,和去年相比增速超过 39%。随着政策的支持和资本的加入,未来几年中国大数据规模还将继续增长,但增速可能会趋于平稳。
大数据在各行业应用状况
企业哪些方面最需要大数据?
根据大数据分析结果,将近一半的企业将大数据运用在企业工商信息管理方面,此外,在社会保障、劳动就业、市政管理、教育科研方面分别占据33.9%,32.7%,29.4%,29%。整体来看,大数据的应用范围广泛。
多少企业应用到了大数据?
大数据分析对企业的发展越来越重要, 35.1%以上的企业已经开始在企业内部应用到了大数据;34.2%的企业正在考虑应用大数据,22.9%的企业在未来1年有应用大数据的计划,仅仅有7.8%的企业暂不考虑应用大数据。
这些企业如何使用大数据?
根据数据显示,38.8%的企业使用实时动态处理大数据并提供分析结果;37.5% 的企业分析历史数据;通过机器学习(+微信关注网络世界),辅助企业管理者更好地决策的企业占比为22.5% 。
各行业大数据的发展水平如何?
我国行业大数据总体发展水平较好,在各行业都有应用。其中,金融大数据、政务大数据的应用水平最高,同时交通、电信、商贸、医疗、教育、旅游等行业大数据的发展水平也有显著提升。
大数据助力企业发展 企业在哪些领域会应用大数据?
大数据应用最广泛的top3领域是营销分析、客户分析和内部运营管理。其中,营销分析占比6成以上;50.2%的企业使用大数据进行客户分析;48.4% 的企业运用大数据进行内部运营管理。
大数据应用对企业的影响
这么多企业应用大数据,大数据将会为这些企业带来什么收益呢?
55.8%的企业表示应用大数据后实现了更智能的决策;应用大数据提升了运营效率的企业占比为48.2%,这两个影响最为显著。应用大数据更好的管理风险,创造新的业务收入,增强生产能力的企业也占有一定比重。
随着大数据技术和机器学习技术的进步,大数据在各行各业的应用还将继续加强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23