京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解读大数据行业在2017年的新发展
随着科技的进步,大数据从科学前沿逐渐深入到各行业。2017年中国的大数据行业有什么新动态?大数据行业整体市场规模如何?大数据行业前景如何?如何助力企业发展?今日的比格数据,我们来一起解读大数据行业在2017年的新发展。
大数据行业整体市场规模及预测
整体来看,2017 年中国大数据行业的发展依然呈稳步上升趋势,市场规模达到了 234 亿元,和去年相比增速超过 39%。随着政策的支持和资本的加入,未来几年中国大数据规模还将继续增长,但增速可能会趋于平稳。
大数据在各行业应用状况
企业哪些方面最需要大数据?
根据大数据分析结果,将近一半的企业将大数据运用在企业工商信息管理方面,此外,在社会保障、劳动就业、市政管理、教育科研方面分别占据33.9%,32.7%,29.4%,29%。整体来看,大数据的应用范围广泛。
多少企业应用到了大数据?
大数据分析对企业的发展越来越重要, 35.1%以上的企业已经开始在企业内部应用到了大数据;34.2%的企业正在考虑应用大数据,22.9%的企业在未来1年有应用大数据的计划,仅仅有7.8%的企业暂不考虑应用大数据。
这些企业如何使用大数据?
根据数据显示,38.8%的企业使用实时动态处理大数据并提供分析结果;37.5% 的企业分析历史数据;通过机器学习(+微信关注网络世界),辅助企业管理者更好地决策的企业占比为22.5% 。
各行业大数据的发展水平如何?
我国行业大数据总体发展水平较好,在各行业都有应用。其中,金融大数据、政务大数据的应用水平最高,同时交通、电信、商贸、医疗、教育、旅游等行业大数据的发展水平也有显著提升。
大数据助力企业发展 企业在哪些领域会应用大数据?
大数据应用最广泛的top3领域是营销分析、客户分析和内部运营管理。其中,营销分析占比6成以上;50.2%的企业使用大数据进行客户分析;48.4% 的企业运用大数据进行内部运营管理。
大数据应用对企业的影响
这么多企业应用大数据,大数据将会为这些企业带来什么收益呢?
55.8%的企业表示应用大数据后实现了更智能的决策;应用大数据提升了运营效率的企业占比为48.2%,这两个影响最为显著。应用大数据更好的管理风险,创造新的业务收入,增强生产能力的企业也占有一定比重。
随着大数据技术和机器学习技术的进步,大数据在各行各业的应用还将继续加强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07