
大数据时代,程序员离春天只差一次转型
程序员作为现代社会的主流职业,在很多人心里已经打上了高收入的烙印。很多大学也开展了计算机课程,为社会培养程序开发人员。随着大数据的爆发,中国IT业内环境也将面临新一轮的洗牌,不仅是企业,更是从业人员转型可遇而不可求的机遇。程序员怎样抓住机遇,转型为热门的大数据工程师呢?本文为你揭秘!
看下图,在未来技术方向的调查中,工程师最看好的是大数据、人工智能、移动开发、云计算、这几项不分伯仲,是技术人员的最看好的方向。中国大数据技术还处于萌芽状态,因此,现在正是学习大数据技术的最佳时期。
大数据是什么
查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity--这个好像是IBM的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
大数据时代,程序员的春天
大数据从事的是开源工作,更倾向于“研发”,能够重新激起程序员研发程序的热情,职业生涯有了新的追求,这意味着大数据会成为值得程序员长期奋斗不断突破的工作;其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象。薪资上升容易,职业发展潜力巨大。
世界正从IT时代走向DT时代,未来是大数据的时代,企业最有价值的资产就是数据,你所拥有的数据越多你就越有说话权,因此未来企业里最牛逼的员工应该是和数据有关的职位。
大数据工程师的几个职位
每家公司对大数据工作的要求不尽相同:有的强调数据库编程、有的突出应用数学和统计学知识、有的则要求有咨询公司或投行相关的经验、有些是希望能找到懂得产品和市场的应用型人才。正因为如此,很多公司会针对自己的业务类型和团队分工,给这群与大数据打交道的人一些新的头衔和定义:数据挖掘工程师、大数据专家、数据研究员、用户分析专家等都是经常在国内公司里出现的Title,我们将其统称为“大数据工程师”。
如何转型为大数据工程师?
那么,程序员如何转型成为优秀的大数据工程师呢?主要是从两者所要求的能力上来分析。首先,大数据工程师是需要有计算机编码能力的,因为面对海量的非结构化数据,你要从中挖掘出有价值的东西,需要设计算法与编写程序去实现,而程序员最牛的能力就是编写简洁高效的代码,去实现人们许许多多美妙的梦想,编码能力越强的程序员越有可能成为优秀的大数据工程师。
其次,大数据工程师需要统计学与应用数学相关的能力背景,数据挖掘与分析是需要设计数据模型和算法的,应该说程序员是有这个基础的,我见过最牛逼的程序员一般都不是科班出来的,通常是数学专业,因此提高算法设计能力是程序员转型大数据工程师的关键因素。
第三,大数据工程师需要具备某一行业的业务知识,大数据的挖掘与分析最终都要服务于市场,并对产品的销售与企业的发展起到重大推动作用,那才是有价值的大数据分析,因此大数据是不能脱离市场的,它必须与某一行业的应用想结合起来才容易产生更大的价值,通常程序员都是在做某一行业的软件,经过多年的学习与磨练,对某一行业的业务知识是有积累的,因此从这一点上来看,程序员是很容易过渡到大数据工程师的。
当然,以上都只是粗略的分析,真正要成为一名优秀的大数据工程师,程序员还需要更多的学习与努力。
大数据工程师必备的技能
一个优秀的大数据工程师要具备一定的逻辑分析能力,并能迅速定位某个商业问题的关键属性和决定因素。学习能力能帮助大数据工程师快速适应不同的项目,并在短时间内成为这个领域的数据专家;沟通能力则能让他们的工作开展地更顺利,因为大数据工程师的工作主要分为两种方式:由市场部驱动和由数据分析部门驱动,前者需要常常向产品经理了解开发需求,后者则需要找运营部了解数据模型实际转化的情况。
大数据相关的技能,从数据本身来说,大概需要从数据获取、数据处理、数据分析、数据存储和数据挖掘来说,具体如下:
数据获取:日志收集 Scribe、Flume和爬虫等
数据处理:流式计算的storm, spark streaming、Hadoop、消息队列相关的如Kafka等
数据分析:HIVE、SPARK、基本算法、数据结构等
数据存储:HDFS等
数据挖掘:机器学习相关算法,聚类、时间序列、推荐系统、回归分析、文本挖掘、贝叶斯分类、神经网络等
DT时代来得太突然了,当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15